Flora Vaccarino, MD
Research & Publications
Biography
News
Research Summary
Stem cells are pluripotent cells that give rise to all tissues of the body, including neurons and glia of the central nervous system. Genome-scale complex regulatory processes unfold over time and space in the prenatal central nervous system to establish developmental programs that govern the differentiation of neuronal and glial cell types that populate the brain. Cell-intrinsic, species-specific genetic blueprints as well as cell-to-cell contacts and signaling systems govern these complex regulatory processes and render them more robust to perturbations. We hypothesize that slight deviations from typical programs of differentiation and patterning of neural stem cells characterize normal human individuals and predispose to disorders such as autism, Tourette syndrome, and schizophrenia. Induced pluripotent cells (iPSC) derived from living individuals and differentiated into brain organoids recapitulate brain development in a dish, allowing us to examine typical and atypical development and the underlying gene regulatory processes. Using these models we study how inter-individual variations in transcriptome, enhancer activity, DNA architecture and somatic mutations impact typical and atypical brain development in human brain organoids and, whenever possible, in vivo.
Another interest of our lab is the study of cell lineages in human development. Tracing cell lineages is fundamental for understanding the rules governing development in multicellular organisms and delineating complex biological processes involving the differentiation of cell types with distinct lineage hierarchies. Lineage mapping in humans is based on retrospective methods relying on naturally occurring mosaic mutations.
Mosaic mutations occur throughout the genome in all cells starting from the first cell divisions of the embryo, are inherited by all their daughters and can be discovered by comparing the genomes of individual cells and tissues within an individual.
Specialized Terms: Neural stem cells; Cerebral cortex; Neuronal progenitors; Postmortem human brain; Induced pluripotent stem cells; somatic mosaicism, human cell lineage reconstruction, enhancer activity, gene expression, brain organoids.
Extensive Research Description
The Vaccarino laboratory has elucidated crucial mechanisms that regulate neural stem cell self-renewal, survival and differentiation. The lab has been examining conserved mechanisms of forebrain development using mouse models, and human-specific mechanisms by examining human stem and progenitor cells. Using induced pluripotent cells (iPSC) derived from living individuals, the Vaccarino group is now examining how human stem cell differentiation varies across different genetic backgrounds, sex, and clinical phenotypes.
In the 1990’s Vaccarino and colleagues reported that an extracellular protein called Basic Fibroblast Growth Factor 2 (FGF2) increases the number of progenitors for excitatory cortical neurons in vitro (Vaccarino et al., 1995) and in vivo, by microinjection of FGF2 into the cerebral ventricles of rat embryos, producing an increase in cortical surface area (Vaccarino et al., 1999). This was the first evidence that a single factor can elicit a permanent increase in pyramidal neuron number and cerebral cortical size in a mammalian species. Subsequent work demonstrated that the FGF ligands (Vaccarino et al., 1999; Raballo et al., 2000; Korada et al., 2002) and FGF receptors are essential for normal telencephalic development in a region-specific fashion. The Fgfr1 gene knockout alone thwarts cell proliferation within the hippocampal primordium, causing lifelong hippocampal atrophy (Ohkubo et al., 2004), and the double knockout of Fgfr1 and Fgfr2 causes prefrontal cortex volume loss with fewer pyramidal cells (Stevens et al, 2010). Finally, the combined knockout of Fgfr1, Fgfr2 and Fgfr3 in early neurogenesis depletes the cortical stem cell pool globally, resulting in premature ending of neurogenesis and decreased cortical surface area (Rash et al, 2011). Conversely, a microinjection of FGF2 in the lateral ventricles at pre-neurogenic stages of cortical development generates a massive enlargement of frontal cortical surface and the appearance of gyrus-like convolutions in stereotypic bilateral locations (Rash et al, 2013).
In summary, our studies have shown that FGFs establish the primary structure and the surface area of the cerebral cortex by promoting the self-renewal of neural stem cells and the differentiation of projection neurons from neuroepithelial precursors.
The lab has also examined the roles of FGFs in astroglial cells—diverse cellular elements that evolve from a primary role of neural progenitors during embryonic development, to essential partners in neuronal migration, maturation, and metabolic support in the adult brain. To study astroglial cells, the lab has generated the GFAP-CreERT2 transgenic line, in which the Cre recombinase can be transiently induced by a tamoxifen injection in GFAP+ astroglial cells (Ganat et al, 2006). By marking GFAP+ astroglial cells via recombination of genetic reporters, we found that astrocytes can produce neurons in the immature brain, a process that is enhanced by hypoxic injury (Fagel et al., 2006, and Fagel et al, 2009; Bi et al, 2011) and dependent in part upon FGF receptor function (Fagel et al, 2009; Stevens et al, 2102). Furthermore, FGF receptors are required in astroglia to indirectly promote the maturation of cortical inhibitory interneurons during early postnatal development (Müller Smith et al, 2014). Induced loss of FGF signaling only in postnatal astrocytes generates stereotypic locomotor hyperactivity and learning and memory defects that correlate with deficit in specific cell populations in the postnatal brain (Müller Smith et al, 2008, Stevens et al, 2012).
Conscious of the profound differences between brain development in rodents and primates, the Vaccarino lab has been pursuing parallel studies of the human brain. A major theme is whether an excitatory/inhibitory neuron imbalance in specific forebrain systems due to disparate etiologies (i.e., gene mutations; prenatal factors; environmental noxae) may predispose to neuropsychiatric disorders such as autism and Tourette syndrome.
Through postmortem studies of patient and control brains, the lab has discovered in landmark studies that individuals with Tourette’s syndrome (TS) have losses of GABAergic and cholinergic interneurons in the striatum. TS is a developmental disorder of childhood characterized by motor and vocal tics. We demonstrated a large decrease in three classes of interneurons in the striatum of TS: Parvalbumin+; NOS+/NPY+/SST+; and cholinergic (Kalanithi et al, 2005; Kataoka et al, 2010). RNA sequencing confirmed the decreased in interneuron transcripts, and also revealed an up-regulation of inflammatory response- and immune system-related genes (Lennington et al., 2014). The hypothesis is that altered development of subsets of inhibitory neurons in cortico-basal ganglia circuits causes specific alterations in neuronal firing that may cause disorders of the TS spectrum. Current studies using iPSC-derived basal ganglia organoids confirm thwarted development of inhibitory and cholinergic interneurons in TS and suggest potential pathophysiological mechanisms (see below).
To model disorders of brain development in a human system, the Vaccarino lab has adopted the induced pluripotent stem cell (iPSC) model and over the last several years has derived over 600 iPSC lines from patients with developmental disorders. Vaccarino and colleagues pioneered the generation of cortical organoids from iPSC lines (Mariani et al, 2012) and contributed fundamental work on neurodevelopmental alterations in severe, idiopathic ASD using this tool. Transcriptome and cell fate studies in organoids from individuals affected with ASD as compared to unaffected family members indicated alterations in cell proliferation, overproduction of synapses and a striking imbalance between inhibitory and excitatory neurons and their precursors (Mariani et al, Cell, 2015). The work has also revealed an important role of the transcription factor FOXG1 in the overproduction of GABAegic precursor cells (Mariani et al, 2015).
Other studies integrated genomes, transcriptomes and cellular phenotypes to better characterize the organoids as a model for brain development. As part of the PsychENCODE collaborative multi-site project, the lab generated a genome-scale catalog of transcripts and regulatory DNA elements, primarily enhancers, in iPSC-derived organoids and human brain specimens of the same genetic background. The work established that cortical organoids reflect the human cerebral cortex at embryonic to early fetal stages of human brain development, and display a large repertoire of active enhancers that control early neuronal fate and differentiation (Amiri et al, 2018).
Current studies are using single cell approaches to characterize brain organoids in people with different genetic background and in patients with ASD and Tourette syndrome, integrating gene expression with gene regulatory elements and chromatin architecture.
In recent years, somatic mosaicism has emerged as a potential source of differences in developmental trajectories among individuals. Somatic mosaicism is the accumulation of mutations in cellular genomes after fertilization. These can be variations in DNA sequence, including single nucleotide variations (SNVs) and small insertions/deletions (Indels), or variations in DNA copy number (CNVs), in the form of large duplication/deletions. The notion that cells in an individual organism do not share the same genome is not new, but only in the last decade the scientific community has begun to use emerging deep sequencing technologies to understand the scale of this phenomenon. Somatic mutations are present in both normal cells and in various diseases (Jourdon et al, 2020) and somatic variation has been suggested to play a role in driving neuronal diversity and genome evolution. We collaborate closely with the computational genomics laboratory of Alexej Abyzov at the Mayo Clinic. Together, we have demonstrated and quantified widespread somatic mosaicism in many human cell types and tissues, including human skin fibrolasts (Abyzov et al, Nature, 2012; Abyzov et al, Genome Research, 2017; Fasching et al, Science, 2021) and the human developing brain (Bae et al, Science, 2018).
We were founding members of the Brain Somatic Mosaicism (BSMN) network, sponsored by the National Institute of Mental Health (NIMH) and encompassing laboratories from several major centers in the US. We are active members of the Somatic Mosaisism across Human Tissues (SMaHT) consortium, which aims at generating a catalog of somatic genomic variants in several tissue across the human body and brain.
Using postmortem tissue, our group was the first to use retrospective somatic mutations to delineate a lineage map for the early human embryo, which suggested that a mosaic single nucleotide variant (SNV) is generated at each cell division (rate: 1.3 SNVs/cell/mitosis) (Bae et al, Science, 2018). Since then, we determined that lineage reconstruction can be done in living persons, opening the possibility of using routine lineage reconstruction for understanding individual differences in development, as well as early diagnosis of many medical conditions involving lineage asymmetry and clonal expansion due to MM, including cancer and epilepsy (Fasching et al, Science, 2021).
Our current work seeks to develop a comprehensive yet minimally invasive approach, including experimental procedures and computational methods, for generating individualized lineage and mosaicism maps. If successful, it could provide a fundamental shift in clinical practice from considering just the individual germline genome to considering the germline genome along with the individual lineage and mosaicism maps and, perhaps, updating these maps over an individual’s lifetime.
Coauthors
Research Interests
Central Nervous System Diseases; Mice, Inbred Strains; Mice, Transgenic; Mosaicism; Neuroanatomy; Neurosciences; Patients; Regeneration; Developmental Biology; Cell Lineage; Living Donors; Psychiatry and Psychology; Human Genetics
Research Images
Selected Publications
- Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesisJourdon A, Wu F, Mariani J, Capauto D, Norton S, Tomasini L, Amiri A, Suvakov M, Schreiner J, Jang Y, Panda A, Nguyen C, Cummings E, Han G, Powell K, Szekely A, McPartland J, Pelphrey K, Chawarska K, Ventola P, Abyzov A, Vaccarino F. Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis. Nature Neuroscience 2023, 26: 1505-1515. PMID: 37563294, DOI: 10.1038/s41593-023-01399-0.
- Efficient reconstruction of cell lineage trees for cell ancestry and cancerJang Y, Fasching L, Bae T, Tomasini L, Schreiner J, Szekely A, Fernandez T, Leckman J, Vaccarino F, Abyzov A. Efficient reconstruction of cell lineage trees for cell ancestry and cancer. Nucleic Acids Research 2023, 51: e57-e57. PMID: 37026484, PMCID: PMC10250207, DOI: 10.1093/nar/gkad254.
- Clonally Selected Lines After CRISPR-Cas Editing Are Not IsogenicPanda A, Suvakov M, Mariani J, Drucker K, Park Y, Jang Y, Kollmeyer T, Sarkar G, Bae T, Kim J, Yoon W, Jenkins R, Vaccarino F, Abyzov A. Clonally Selected Lines After CRISPR-Cas Editing Are Not Isogenic. The CRISPR Journal 2023, 6: 176-182. PMID: 37071670, PMCID: PMC10123805, DOI: 10.1089/crispr.2022.0050.
- Neonatal loss of FGFR2 in astroglial cells affects locomotion, sociability, working memory, and glia-neuron interactions in miceStevens H, Scuderi S, Collica S, Tomasi S, Horvath T, Vaccarino F. Neonatal loss of FGFR2 in astroglial cells affects locomotion, sociability, working memory, and glia-neuron interactions in mice. Translational Psychiatry 2023, 13: 89. PMID: 36906620, PMCID: PMC10008554, DOI: 10.1038/s41398-023-02372-y.
- Maternal FGF2 levels associated with child anxiety and depression symptoms through child FGF2 levelsLebowitz E, Marin C, Orbach M, Salmaso N, Vaccarino F, Silverman W. Maternal FGF2 levels associated with child anxiety and depression symptoms through child FGF2 levels. Journal Of Affective Disorders 2023, 326: 193-197. PMID: 36717031, PMCID: PMC10104478, DOI: 10.1016/j.jad.2023.01.090.
- Characterization of human basal ganglia organoidsBrady M, Mariani J, Koca Y, Szekely A, King R, Bloch M, Landeros-Weisenberger A, Leckman J, Vaccarino F. Characterization of human basal ganglia organoids. Molecular Psychiatry 2022, 27: 4823-4823. PMID: 36536052, DOI: 10.1038/s41380-022-01914-y.
- Somatic genomic mosaicism in the brain during aging: Scratching the surfaceBae T, Wang Y, Vaccarino F, Abyzov A. Somatic genomic mosaicism in the brain during aging: Scratching the surface. Clinical And Translational Medicine 2022, 12: e1138. PMID: 36495113, PMCID: PMC9736788, DOI: 10.1002/ctm2.1138.
- Mispatterning and interneuron deficit in Tourette Syndrome basal ganglia organoidsBrady M, Mariani J, Koca Y, Szekely A, King R, Bloch M, Landeros-Weisenberger A, Leckman J, Vaccarino F. Mispatterning and interneuron deficit in Tourette Syndrome basal ganglia organoids. Molecular Psychiatry 2022, 27: 5007-5019. PMID: 36447010, PMCID: PMC9949887, DOI: 10.1038/s41380-022-01880-5.
- Correction: All2: A tool for selecting mosaic mutations from comprehensive multi-cell comparisonsSarangi V, Jang Y, Suvakov M, Bae T, Fasching L, Sekar S, Tomasini L, Mariani J, Vaccarino F, Abyzov A. Correction: All2: A tool for selecting mosaic mutations from comprehensive multi-cell comparisons. PLOS Computational Biology 2022, 18: e1010703. PMID: 36378632, PMCID: PMC9665359, DOI: 10.1371/journal.pcbi.1010703.
- A nomenclature consensus for nervous system organoids and assembloidsPașca SP, Arlotta P, Bateup HS, Camp JG, Cappello S, Gage FH, Knoblich JA, Kriegstein AR, Lancaster MA, Ming GL, Muotri AR, Park IH, Reiner O, Song H, Studer L, Temple S, Testa G, Treutlein B, Vaccarino FM. A nomenclature consensus for nervous system organoids and assembloids. Nature 2022, 609: 907-910. PMID: 36171373, DOI: 10.1038/s41586-022-05219-6.
- Analysis of somatic mutations in 131 human brains reveals aging-associated hypermutabilityBae T, Fasching L, Wang Y, Shin JH, Suvakov M, Jang Y, Norton S, Dias C, Mariani J, Jourdon A, Wu F, Panda A, Pattni R, Chahine Y, Yeh R, Roberts RC, Huttner A, Kleinman JE, Hyde TM, Straub RE, Walsh CA, Urban A, Leckman J, Weinberger D, Vaccarino F, Abyzov A, Walsh C, Park P, Sestan N, Weinberger D, Moran J, Gage F, Vaccarino F, Gleeson J, Mathern G, Courchesne E, Roy S, Chess A, Akbarian S, Bizzotto S, Coulter M, Dias C, D’Gama A, Ganz J, Hill R, Huang A, Khoshkhoo S, Kim S, Lee A, Lodato M, Maury E, Miller M, Borges-Monroy R, Rodin R, Zhou Z, Bohrson C, Chu C, Cortes-Ciriano I, Dou Y, Galor A, Gulhan D, Kwon M, Luquette J, Sherman M, Viswanadham V, Jones A, Rosenbluh C, Cho S, Langmead B, Thorpe J, Erwin J, Jaffe A, McConnell M, Narurkar R, Paquola A, Shin J, Straub R, Abyzov A, Bae T, Jang Y, Wang Y, Molitor C, Peters M, Linker S, Reed P, Wang M, Urban A, Zhou B, Zhu X, Pattni R, Serres Amero A, Juan D, Lobon I, Marques-Bonet T, Solis Moruno M, Garcia Perez R, Povolotskaya I, Soriano E, Antaki D, Averbuj D, Ball L, Breuss M, Yang X, Chung C, Emery S, Flasch D, Kidd J, Kopera H, Kwan K, Mills R, Moldovan J, Sun C, Zhao X, Zhou W, Frisbie T, Cherskov A, Fasching L, Jourdon A, Pochareddy S, Scuderi S. Analysis of somatic mutations in 131 human brains reveals aging-associated hypermutability. Science 2022, 377: 511-517. PMID: 35901164, PMCID: PMC9420557, DOI: 10.1126/science.abm6222.
- All2: A tool for selecting mosaic mutations from comprehensive multi-cell comparisonsSarangi V, Jang Y, Suvakov M, Bae T, Fasching L, Sekar S, Tomasini L, Mariani J, Vaccarino FM, Abyzov A. All2: A tool for selecting mosaic mutations from comprehensive multi-cell comparisons. PLOS Computational Biology 2022, 18: e1009487. PMID: 35442945, PMCID: PMC9060341, DOI: 10.1371/journal.pcbi.1009487.
- Cellular and Molecular Pathology in Tourette SyndromeFasching L, Brady M, Vaccarino F. Cellular and Molecular Pathology in Tourette Syndrome. 2022, 171-183. DOI: 10.1093/med/9780197543214.003.0012.
- Role of SHH in Patterning Human Pluripotent Cells towards Ventral Forebrain FatesBrady MV, Vaccarino FM. Role of SHH in Patterning Human Pluripotent Cells towards Ventral Forebrain Fates. Cells 2021, 10: 914. PMID: 33923415, PMCID: PMC8073580, DOI: 10.3390/cells10040914.
- Comprehensive identification of somatic nucleotide variants in human brain tissueWang Y, Bae T, Thorpe J, Sherman MA, Jones AG, Cho S, Daily K, Dou Y, Ganz J, Galor A, Lobon I, Pattni R, Rosenbluh C, Tomasi S, Tomasini L, Yang X, Zhou B, Akbarian S, Ball LL, Bizzotto S, Emery SB, Doan R, Fasching L, Jang Y, Juan D, Lizano E, Luquette LJ, Moldovan JB, Narurkar R, Oetjens MT, Rodin RE, Sekar S, Shin JH, Soriano E, Straub RE, Zhou W, Chess A, Gleeson JG, Marquès-Bonet T, Park PJ, Peters MA, Pevsner J, Walsh CA, Weinberger DR, Vaccarino F, Moran J, Urban A, Kidd J, Mills R, Abyzov A. Comprehensive identification of somatic nucleotide variants in human brain tissue. Genome Biology 2021, 22: 92. PMID: 33781308, PMCID: PMC8006362, DOI: 10.1186/s13059-021-02285-3.
- Early developmental asymmetries in cell lineage trees in living individualsFasching L, Jang Y, Tomasi S, Schreiner J, Tomasini L, Brady MV, Bae T, Sarangi V, Vasmatzis N, Wang Y, Szekely A, Fernandez TV, Leckman JF, Abyzov A, Vaccarino FM. Early developmental asymmetries in cell lineage trees in living individuals. Science 2021, 371: 1245-1248. PMID: 33737484, PMCID: PMC8324008, DOI: 10.1126/science.abe0981.
- Cell-to-Cell Adhesion and Neurogenesis in Human Cortical Development: A Study Comparing 2D Monolayers with 3D Organoid CulturesScuderi S, Altobelli GG, Cimini V, Coppola G, Vaccarino FM. Cell-to-Cell Adhesion and Neurogenesis in Human Cortical Development: A Study Comparing 2D Monolayers with 3D Organoid Cultures. Stem Cell Reports 2021, 16: 264-280. PMID: 33513360, PMCID: PMC7878838, DOI: 10.1016/j.stemcr.2020.12.019.
- Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and gliaZhu X, Zhou B, Pattni R, Gleason K, Tan C, Kalinowski A, Sloan S, Fiston-Lavier AS, Mariani J, Petrov D, Barres BA, Duncan L, Abyzov A, Vogel H, Moran J, Vaccarino F, Tamminga C, Levinson D, Urban A. Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia. Nature Neuroscience 2021, 24: 186-196. PMID: 33432196, PMCID: PMC8806165, DOI: 10.1038/s41593-020-00767-4.
- Fibroblast Growth Factor 2 Implicated in Childhood Anxiety and Depression SymptomsLebowitz ER, Orbach M, Marin CE, Salmaso N, Vaccarino FM, Silverman WK. Fibroblast Growth Factor 2 Implicated in Childhood Anxiety and Depression Symptoms. Journal Of Affective Disorders 2021, 282: 611-616. PMID: 33445083, PMCID: PMC7897422, DOI: 10.1016/j.jad.2020.12.055.
- SCELLECTOR: ranking amplification bias in single cells using shallow sequencingSarangi V, Jourdon A, Bae T, Panda A, Vaccarino F, Abyzov A. SCELLECTOR: ranking amplification bias in single cells using shallow sequencing. BMC Bioinformatics 2020, 21: 521. PMID: 33183232, PMCID: PMC7663899, DOI: 10.1186/s12859-020-03858-y.
- Complex mosaic structural variations in human fetal brainsSekar S, Tomasini L, Proukakis C, Bae T, Manlove L, Jang Y, Scuderi S, Zhou B, Kalyva M, Amiri A, Mariani J, Sedlazeck F, Urban AE, Vaccarino F, Abyzov A. Complex mosaic structural variations in human fetal brains. Genome Research 2020, 30: gr.262667.120. PMID: 33122304, PMCID: PMC7706730, DOI: 10.1101/gr.262667.120.
- PsychENCODE and beyond: transcriptomics and epigenomics of brain development and organoidsJourdon A, Scuderi S, Capauto D, Abyzov A, Vaccarino FM. PsychENCODE and beyond: transcriptomics and epigenomics of brain development and organoids. Neuropsychopharmacology 2020, 46: 70-85. PMID: 32659782, PMCID: PMC7689467, DOI: 10.1038/s41386-020-0763-3.
- One for All: A Pooled Approach to Classify Functional Impacts of Multiple MutationsJourdon A, Vaccarino FM. One for All: A Pooled Approach to Classify Functional Impacts of Multiple Mutations. Cell Stem Cell 2020, 27: 1-3. PMID: 32619508, DOI: 10.1016/j.stem.2020.06.016.
- The role of somatic mosaicism in brain diseaseJourdon A, Fasching L, Scuderi S, Abyzov A, Vaccarino FM. The role of somatic mosaicism in brain disease. Current Opinion In Genetics & Development 2020, 65: 84-90. PMID: 32622340, PMCID: PMC7749073, DOI: 10.1016/j.gde.2020.05.002.
- Antibodies From Children With PANDAS Bind Specifically to Striatal Cholinergic Interneurons and Alter Their ActivityXu J, Liu RJ, Fahey S, Frick L, Leckman J, Vaccarino F, Duman RS, Williams K, Swedo S, Pittenger C. Antibodies From Children With PANDAS Bind Specifically to Striatal Cholinergic Interneurons and Alter Their Activity. American Journal Of Psychiatry 2020, 178: 48-64. PMID: 32539528, PMCID: PMC8573771, DOI: 10.1176/appi.ajp.2020.19070698.
- Cell Lineage Tracing and Cellular Diversity in HumansAbyzov A, Vaccarino FM. Cell Lineage Tracing and Cellular Diversity in Humans. Annual Review Of Genomics And Human Genetics 2020, 21: 101-116. PMID: 32413272, DOI: 10.1146/annurev-genom-083118-015241.
- Cellular and molecular pathology in Tourette syndromeFasching L, Brady M, Vaccarino FM. Cellular and molecular pathology in Tourette syndrome. In: Martino D, Leckman JF, editors. Tourette Syndrome 2 ed. Oxford, UK: Oxford University Press; 2020.
- Chapter 5 Induced pluripotent stem cells as models of human neurodevelopmental disordersJourdon A, Mariani J, Scuderi S, Amiri A, Wu F, Yuen E, Abyzov A, Vaccarino F. Chapter 5 Induced pluripotent stem cells as models of human neurodevelopmental disorders. 2020, 99-127. DOI: 10.1016/b978-0-12-814409-1.00005-7.
- Chapter 40 Tourette syndromeFasching L, Brady M, Bloch M, Lombroso P, Vaccarino F. Chapter 40 Tourette syndrome. 2020, 675-686. DOI: 10.1016/b978-0-12-813866-3.00040-0.
- 17 MACHINE LEARNING REVEALS BILATERAL DISTRIBUTION OF SOMATIC L1 INSERTIONS IN HUMAN NEURONS AND GLIAZhu X, Zhou B, Pattni R, Gleason K, Tan C, Kalinowski A, Sloan S, Fiston-Lavier A, Mariani J, Vogel H, Moran J, Vaccarino F, Tamminga C, Levinson D, Urban A. 17 MACHINE LEARNING REVEALS BILATERAL DISTRIBUTION OF SOMATIC L1 INSERTIONS IN HUMAN NEURONS AND GLIA. European Neuropsychopharmacology 2019, 29: s68. DOI: 10.1016/j.euroneuro.2019.07.158.
- Approaches and Methods for Variant Analysis in the Genome of a Single CellAbyzov A, Vaccarino F, Urban A, Sarangi V. Approaches and Methods for Variant Analysis in the Genome of a Single Cell. 2019, 10: 203-228. DOI: 10.1007/978-3-030-24970-0_14.
- Breakthrough Moments: Yoshiki Sasai’s Discoveries in the Third DimensionMariani J, Vaccarino FM. Breakthrough Moments: Yoshiki Sasai’s Discoveries in the Third Dimension. Cell Stem Cell 2019, 24: 837-838. PMID: 31173711, PMCID: PMC7085937, DOI: 10.1016/j.stem.2019.05.007.
- Transcriptome and epigenome landscape of human cortical development modeled in organoidsAmiri A, Coppola G, Scuderi S, Wu F, Roychowdhury T, Liu F, Pochareddy S, Shin Y, Safi A, Song L, Zhu Y, Sousa AMM, Gerstein M, Crawford G, Sestan N, Abyzov A, Vaccarino F, Akbarian S, An J, Armoskus C, Ashley-Koch A, Beach T, Belmont J, Bendl J, Borrman T, Brown L, Brown M, Brown M, Brunetti T, Bryois J, Burke E, Camarena A, Carlyle B, Chae Y, Charney A, Chen C, Cheng L, Cherskov A, Choi J, Clarke D, Collado-Torres L, Dai R, De La Torre Ubieta L, DelValle D, Devillers O, Dracheva S, Emani P, Evgrafov O, Farnham P, Fitzgerald D, Flatow E, Francoeur N, Fullard J, Gandal M, Gao T, Garrett M, Geschwind D, Giase G, Girdhar K, Giusti-Rodriguez P, Goes F, Goodman T, Grennan K, Gu M, Gürsoy G, Hadjimichael E, Hahn C, Haroutunian V, Hauberg M, Hoffman G, Huey J, Hyde T, Ivanov N, Jacobov R, Jaffe A, Jiang Y, Jiang Y, Johnson G, Kassim B, Kefi A, Kim Y, Kitchen R, Kleiman J, Knowles J, Kozlenkov A, Li M, Li Z, Lipska B, Liu C, Liu S, Mangravite L, Mariani J, Mattei E, Miller D, Moore J, Nairn A, Navarro F, Park R, Peters M, Pinto D, Pochareddy S, Polioudakis D, Pratt H, Price A, Purcaro M, Ray M, Reddy T, Rhie S, Roussos P, Sanders S, Santpere G, Schreiner S, Sheppard B, Shi X, Shieh A, Shin J, Skarica M, Song L, Sousa A, Spitsyna V, State M, Sullivan P, Swarup V, Szatkiewicz J, Szekely A, Tao R, van Bakel H, Wang Y, Wang D, Warrell J, Webster M, Weissman S, Weng Z, Werling D, White K, Willsey J, Wiseman J, Witt H, Won H, Wray G, Xia Y, Xu M, Yang Y, Yang M, Zandi P, Zhang J, Zharovsky E. Transcriptome and epigenome landscape of human cortical development modeled in organoids. Science 2018, 362 PMID: 30545853, PMCID: PMC6426303, DOI: 10.1126/science.aat6720.
- Comprehensive functional genomic resource and integrative model for the human brainWang D, Liu S, Warrell J, Won H, Shi X, Navarro FCP, Clarke D, Gu M, Emani P, Yang YT, Xu M, Gandal MJ, Lou S, Zhang J, Park JJ, Yan C, Rhie SK, Manakongtreecheep K, Zhou H, Nathan A, Peters M, Mattei E, Fitzgerald D, Brunetti T, Moore J, Jiang Y, Girdhar K, Hoffman GE, Kalayci S, Gümüş ZH, Crawford GE, Roussos P, Akbarian S, Jaffe A, White K, Weng Z, Sestan N, Geschwind D, Knowles J, Gerstein M, Ashley-Koch A, Crawford G, Garrett M, Song L, Safi A, Johnson G, Wray G, Reddy T, Goes F, Zandi P, Bryois J, Jaffe A, Price A, Ivanov N, Collado-Torres L, Hyde T, Burke E, Kleiman J, Tao R, Shin J, Akbarian S, Girdhar K, Jiang Y, Kundakovic M, Brown L, Kassim B, Park R, Wiseman J, Zharovsky E, Jacobov R, Devillers O, Flatow E, Hoffman G, Lipska B, Lewis D, Haroutunian V, Hahn C, Charney A, Dracheva S, Kozlenkov A, Belmont J, DelValle D, Francoeur N, Hadjimichael E, Pinto D, van Bakel H, Roussos P, Fullard J, Bendl J, Hauberg M, Mangravite L, Peters M, Chae Y, Peng J, Niu M, Wang X, Webster M, Beach T, Chen C, Jiang Y, Dai R, Shieh A, Liu C, Grennan K, Xia Y, Vadukapuram R, Wang Y, Fitzgerald D, Cheng L, Brown M, Brown M, Brunetti T, Goodman T, Alsayed M, Gandal M, Geschwind D, Won H, Polioudakis D, Wamsley B, Yin J, Hadzic T, De La Torre Ubieta L, Swarup V, Sanders S, State M, Werling D, An J, Sheppard B, Willsey A, White K, Ray M, Giase G, Kefi A, Mattei E, Purcaro M, Weng Z, Moore J, Pratt H, Huey J, Borrman T, Sullivan P, Giusti-Rodriguez P, Kim Y, Sullivan P, Szatkiewicz J, Rhie S, Armoskus C, Camarena A, Farnham P, Spitsyna V, Witt H, Schreiner S, Evgrafov O, Knowles J, Gerstein M, Liu S, Wang D, Navarro F, Warrell J, Clarke D, Emani P, Gu M, Shi X, Xu M, Yang Y, Kitchen R, Gürsoy G, Zhang J, Carlyle B, Nairn A, Li M, Pochareddy S, Sestan N, Skarica M, Li Z, Sousa A, Santpere G, Choi J, Zhu Y, Gao T, Miller D, Cherskov A, Yang M, Amiri A, Coppola G, Mariani J, Scuderi S, Szekely A, Vaccarino F, Wu F, Weissman S, Roychowdhury T, Abyzov A. Comprehensive functional genomic resource and integrative model for the human brain. Science 2018, 362 PMID: 30545857, PMCID: PMC6413328, DOI: 10.1126/science.aat8464.
- Fibroblast growth factor 2 is necessary for the antidepressant effects of fluoxetineSimard S, Shail P, MacGregor J, Sayed M, Duman RS, Vaccarino FM, Salmaso N. Fibroblast growth factor 2 is necessary for the antidepressant effects of fluoxetine. PLOS ONE 2018, 13: e0204980. PMID: 30273396, PMCID: PMC6166983, DOI: 10.1371/journal.pone.0204980.
- iPSC-derived neurons profiling reveals GABAergic circuit disruption and acetylated α-tubulin defect which improves after iHDAC6 treatment in Rett syndromeLanducci E, Brindisi M, Bianciardi L, Catania LM, Daga S, Croci S, Frullanti E, Fallerini C, Butini S, Brogi S, Furini S, Melani R, Molinaro A, Lorenzetti FC, Imperatore V, Amabile S, Mariani J, Mari F, Ariani F, Pizzorusso T, Pinto AM, Vaccarino FM, Renieri A, Campiani G, Meloni I. iPSC-derived neurons profiling reveals GABAergic circuit disruption and acetylated α-tubulin defect which improves after iHDAC6 treatment in Rett syndrome. Experimental Cell Research 2018, 368: 225-235. PMID: 29730163, PMCID: PMC9410763, DOI: 10.1016/j.yexcr.2018.05.001.
- From Genes To Brain: Developmental NeurobiologyStevens, H.E., Leckman, J. F., Lombroso, P. J. and Vaccarino, F.M.: From Genes To Brain: Developmental Neurobiology. In: Child and Adolescent Psychiatry, A comprehensive Textbook (2018), 5th edition, edited by Martin, A., Volkmar, F. R., Bloch, M., Wolters Kluwer, ISBN 9781496345493.
- Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesisBae T, Tomasini L, Mariani J, Zhou B, Roychowdhury T, Franjic D, Pletikos M, Pattni R, Chen BJ, Venturini E, Riley-Gillis B, Sestan N, Urban AE, Abyzov A, Vaccarino FM. Different mutational rates and mechanisms in human cells at pregastrulation and neurogenesis. Science 2017, 359: 550-555. PMID: 29217587, PMCID: PMC6311130, DOI: 10.1126/science.aan8690.
- Principles and Approaches for Discovery and Validation of Somatic Mosaicism in the Human BrainAbyzov A, Urban A, Vaccarino F. Principles and Approaches for Discovery and Validation of Somatic Mosaicism in the Human Brain. 2017, 131: 3-24. DOI: 10.1007/978-1-4939-7280-7_1.
- Loss of TrkB Signaling in Parvalbumin-Expressing Basket Cells Results in Network Activity Disruption and Abnormal Behavior.Xenos D, Kamceva M, Tomasi S, Cardin JA, Schwartz ML, Vaccarino FM. Loss of TrkB Signaling in Parvalbumin-Expressing Basket Cells Results in Network Activity Disruption and Abnormal Behavior. Cerebral Cortex 2017, 28: 3399-3413. PMID: 28968898, PMCID: PMC6132287, DOI: 10.1093/cercor/bhx173.
- Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism NetworkMcConnell MJ, Moran JV, Abyzov A, Akbarian S, Bae T, Cortes-Ciriano I, Erwin JA, Fasching L, Flasch DA, Freed D, Ganz J, Jaffe AE, Kwan KY, Kwon M, Lodato MA, Mills RE, Paquola ACM, Rodin RE, Rosenbluh C, Sestan N, Sherman MA, Shin JH, Song S, Straub RE, Thorpe J, Weinberger DR, Urban AE, Zhou B, Gage FH, Lehner T, Senthil G, Walsh CA, Chess A, Courchesne E, Gleeson JG, Kidd JM, Park PJ, Pevsner J, Vaccarino FM, Barton A, Bekiranov S, Bohrson C, Burbulis I, Chronister W, Coppola G, Daily K, D’Gama A, Emery S, Frisbie T, Gao T, Gulyás-Kovács A, Haakenson M, Keil J, Kopera H, Lam M, Lee E, Marques-Bonet T, Mathern G, Moldovan J, Oetjens M, Omberg L, Peters M, Pochareddy S, Pramparo T, Ratan A, Sanavia T, Shi L, Skarica M, Wang J, Wang M, Wang Y, Wierman M, Wolpert M, Woodworth M, Zhao X, Zhou W. Intersection of diverse neuronal genomes and neuropsychiatric disease: The Brain Somatic Mosaicism Network. Science 2017, 356 PMID: 28450582, PMCID: PMC5558435, DOI: 10.1126/science.aal1641.
- Human induced pluripotent stem cells for modelling neurodevelopmental disordersArdhanareeswaran K, Mariani J, Coppola G, Abyzov A, Vaccarino FM. Human induced pluripotent stem cells for modelling neurodevelopmental disorders. Nature Reviews Neurology 2017, 13: 265-278. PMID: 28418023, PMCID: PMC5782822, DOI: 10.1038/nrneurol.2017.45.
- One thousand somatic SNVs per skin fibroblast cell set baseline of mosaic mutational load with patterns that suggest proliferative originAbyzov A, Tomasini L, Zhou B, Vasmatzis N, Coppola G, Amenduni M, Pattni R, Wilson M, Gerstein M, Weissman S, Urban AE, Vaccarino FM. One thousand somatic SNVs per skin fibroblast cell set baseline of mosaic mutational load with patterns that suggest proliferative origin. Genome Research 2017, 27: 512-523. PMID: 28235832, PMCID: PMC5378170, DOI: 10.1101/gr.215517.116.
- Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel GatingZhang Y, Zhang XF, Fleming MR, Amiri A, El-Hassar L, Surguchev AA, Hyland C, Jenkins DP, Desai R, Brown MR, Gazula VR, Waters MF, Large CH, Horvath TL, Navaratnam D, Vaccarino FM, Forscher P, Kaczmarek LK. Kv3.3 Channels Bind Hax-1 and Arp2/3 to Assemble a Stable Local Actin Network that Regulates Channel Gating. Cell 2016, 165: 434-448. PMID: 26997484, PMCID: PMC4826296, DOI: 10.1016/j.cell.2016.02.009.
- Altering the course of schizophrenia: progress and perspectivesMillan MJ, Andrieux A, Bartzokis G, Cadenhead K, Dazzan P, Fusar-Poli P, Gallinat J, Giedd J, Grayson DR, Heinrichs M, Kahn R, Krebs MO, Leboyer M, Lewis D, Marin O, Marin P, Meyer-Lindenberg A, McGorry P, McGuire P, Owen MJ, Patterson P, Sawa A, Spedding M, Uhlhaas P, Vaccarino F, Wahlestedt C, Weinberger D. Altering the course of schizophrenia: progress and perspectives. Nature Reviews Drug Discovery 2016, 15: 485-515. PMID: 26939910, DOI: 10.1038/nrd.2016.28.
- Fibroblast Growth Factor 2 Modulates Hypothalamic Pituitary Axis Activity and Anxiety Behavior Through Glucocorticoid ReceptorsSalmaso N, Stevens HE, McNeill J, ElSayed M, Ren Q, Maragnoli ME, Schwartz ML, Tomasi S, Sapolsky RM, Duman R, Vaccarino FM. Fibroblast Growth Factor 2 Modulates Hypothalamic Pituitary Axis Activity and Anxiety Behavior Through Glucocorticoid Receptors. Biological Psychiatry 2016, 80: 479-489. PMID: 27133954, PMCID: PMC8009045, DOI: 10.1016/j.biopsych.2016.02.026.
- The PsychENCODE projectAkbarian S, Liu C, Knowles JA, Vaccarino FM, Farnham PJ, Crawford GE, Jaffe AE, Pinto D, Dracheva S, Geschwind DH, Mill J, Nairn AC, Abyzov A, Pochareddy S, Prabhakar S, Weissman S, Sullivan PF, State MW, Weng Z, Peters MA, White KP, Gerstein MB, Amiri A, Armoskus C, Ashley-Koch AE, Bae T, Beckel-Mitchener A, Berman BP, Coetzee GA, Coppola G, Francoeur N, Fromer M, Gao R, Grennan K, Herstein J, Kavanagh DH, Ivanov NA, Jiang Y, Kitchen RR, Kozlenkov A, Kundakovic M, Li M, Li Z, Liu S, Mangravite LM, Mattei E, Markenscoff-Papadimitriou E, Navarro FC, North N, Omberg L, Panchision D, Parikshak N, Poschmann J, Price AJ, Purcaro M, Reddy TE, Roussos P, Schreiner S, Scuderi S, Sebra R, Shibata M, Shieh AW, Skarica M, Sun W, Swarup V, Thomas A, Tsuji J, van Bakel H, Wang D, Wang Y, Wang K, Werling DM, Willsey AJ, Witt H, Won H, Wong CC, Wray GA, Wu EY, Xu X, Yao L, Senthil G, Lehner T, Sklar P, Sestan N. The PsychENCODE project. Nature Neuroscience 2015, 18: 1707-1712. PMID: 26605881, PMCID: PMC4675669, DOI: 10.1038/nn.4156.
- Creating Patient-Specific Neural Cells for the In Vitro Study of Brain DisordersBrennand KJ, Marchetto MC, Benvenisty N, Brüstle O, Ebert A, Belmonte J, Kaykas A, Lancaster MA, Livesey FJ, McConnell MJ, McKay RD, Morrow EM, Muotri AR, Panchision DM, Rubin LL, Sawa A, Soldner F, Song H, Studer L, Temple S, Vaccarino FM, Wu J, Vanderhaeghen P, Gage FH, Jaenisch R. Creating Patient-Specific Neural Cells for the In Vitro Study of Brain Disorders. Stem Cell Reports 2015, 5: 933-945. PMID: 26610635, PMCID: PMC4881284, DOI: 10.1016/j.stemcr.2015.10.011.
- Imbalance of excitatory/inhibitory synaptic protein expression in iPSC-derived neurons from FOXG1+/− patients and in foxg1+/− micePatriarchi T, Amabile S, Frullanti E, Landucci E, Lo Rizzo C, Ariani F, Costa M, Olimpico F, W Hell J, M Vaccarino F, Renieri A, Meloni I. Imbalance of excitatory/inhibitory synaptic protein expression in iPSC-derived neurons from FOXG1+/− patients and in foxg1+/− mice. European Journal Of Human Genetics 2015, 24: 871-880. PMID: 26443267, PMCID: PMC4820038, DOI: 10.1038/ejhg.2015.216.
- Contribution of maternal oxygenic state to the effects of chronic postnatal hypoxia on mouse body and brain developmentSalmaso N, Dominguez M, Kravitz J, Komitova M, Vaccarino FM, Schwartz ML. Contribution of maternal oxygenic state to the effects of chronic postnatal hypoxia on mouse body and brain development. Neuroscience Letters 2015, 604: 12-17. PMID: 26222256, PMCID: PMC4568169, DOI: 10.1016/j.neulet.2015.07.033.
- FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum DisordersMariani J, Coppola G, Zhang P, Abyzov A, Provini L, Tomasini L, Amenduni M, Szekely A, Palejev D, Wilson M, Gerstein M, Grigorenko EL, Chawarska K, Pelphrey KA, Howe JR, Vaccarino FM. FOXG1-Dependent Dysregulation of GABA/Glutamate Neuron Differentiation in Autism Spectrum Disorders. Cell 2015, 162: 375-390. PMID: 26186191, PMCID: PMC4519016, DOI: 10.1016/j.cell.2015.06.034.
- Altered expression of neuropeptides in FoxG1-null heterozygous mutant miceFrullanti E, Amabile S, Lolli MG, Bartolini A, Livide G, Landucci E, Mari F, Vaccarino FM, Ariani F, Massimino L, Renieri A, Meloni I. Altered expression of neuropeptides in FoxG1-null heterozygous mutant mice. European Journal Of Human Genetics 2015, 24: 252-257. PMID: 25966633, PMCID: PMC4717204, DOI: 10.1038/ejhg.2015.79.
- The use of stem cells to study autism spectrum disorder.Ardhanareeswaran K, Coppola G, Vaccarino F. The use of stem cells to study autism spectrum disorder. The Yale Journal Of Biology And Medicine 2015, 88: 5-16. PMID: 25745370, PMCID: PMC4345539.
- How Animal Models Inform Child and Adolescent PsychiatryStevens HE, Vaccarino FM. How Animal Models Inform Child and Adolescent Psychiatry. Journal Of The American Academy Of Child & Adolescent Psychiatry 2015, 54: 352-359. PMID: 25901771, PMCID: PMC4407022, DOI: 10.1016/j.jaac.2015.01.019.
- Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndromeXu M, Kobets A, Du JC, Lennington J, Li L, Banasr M, Duman RS, Vaccarino FM, DiLeone RJ, Pittenger C. Targeted ablation of cholinergic interneurons in the dorsolateral striatum produces behavioral manifestations of Tourette syndrome. Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: 893-898. PMID: 25561540, PMCID: PMC4311862, DOI: 10.1073/pnas.1419533112.
- Chapter 107 Tourette SyndromeLennington J, Bloch M, Scahill L, Szuhay G, Lombroso P, Vaccarino F. Chapter 107 Tourette Syndrome. 2015, 1311-1320. DOI: 10.1016/b978-0-12-410529-4.00107-8.
- Editorial commentary: “What does immunology have to do with brain development and neuropsychiatric disorders?”Leckman JF, Vaccarino FM. Editorial commentary: “What does immunology have to do with brain development and neuropsychiatric disorders?”. Brain Research 2014, 1617: 1-6. PMID: 25283746, DOI: 10.1016/j.brainres.2014.09.052.
- Fgfr1 Inactivation in the Mouse Telencephalon Results in Impaired Maturation of Interneurons Expressing ParvalbuminSmith KM, Maragnoli ME, Phull PM, Tran KM, Choubey L, Vaccarino FM. Fgfr1 Inactivation in the Mouse Telencephalon Results in Impaired Maturation of Interneurons Expressing Parvalbumin. PLOS ONE 2014, 9: e103696. PMID: 25116473, PMCID: PMC4130531, DOI: 10.1371/journal.pone.0103696.
- Transcriptome Analysis of the Human Striatum in Tourette SyndromeLennington JB, Coppola G, Kataoka-Sasaki Y, Fernandez TV, Palejev D, Li Y, Huttner A, Pletikos M, Sestan N, Leckman JF, Vaccarino FM. Transcriptome Analysis of the Human Striatum in Tourette Syndrome. Biological Psychiatry 2014, 79: 372-382. PMID: 25199956, PMCID: PMC4305353, DOI: 10.1016/j.biopsych.2014.07.018.
- Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feedingKim JG, Suyama S, Koch M, Jin S, Argente-Arizon P, Argente J, Liu ZW, Zimmer MR, Jeong JK, Szigeti-Buck K, Gao Y, Garcia-Caceres C, Yi CX, Salmaso N, Vaccarino FM, Chowen J, Diano S, Dietrich MO, Tschöp MH, Horvath TL. Leptin signaling in astrocytes regulates hypothalamic neuronal circuits and feeding. Nature Neuroscience 2014, 17: 908-910. PMID: 24880214, PMCID: PMC4113214, DOI: 10.1038/nn.3725.
- Neurobiology of premature brain injurySalmaso N, Jablonska B, Scafidi J, Vaccarino FM, Gallo V. Neurobiology of premature brain injury. Nature Neuroscience 2014, 17: 341-346. PMID: 24569830, PMCID: PMC4106480, DOI: 10.1038/nn.3604.
- Neurogenesis and Maturation in Neonatal Brain InjurySalmaso N, Tomasi S, Vaccarino FM. Neurogenesis and Maturation in Neonatal Brain Injury. Clinics In Perinatology 2013, 41: 229-239. PMID: 24524457, PMCID: PMC3925307, DOI: 10.1016/j.clp.2013.10.007.
- Hypoxia-Induced Developmental Delays of Inhibitory Interneurons Are Reversed by Environmental Enrichment in the Postnatal Mouse ForebrainKomitova M, Xenos D, Salmaso N, Tran KM, Brand T, Schwartz ML, Ment L, Vaccarino FM. Hypoxia-Induced Developmental Delays of Inhibitory Interneurons Are Reversed by Environmental Enrichment in the Postnatal Mouse Forebrain. Journal Of Neuroscience 2013, 33: 13375-13387. PMID: 23946395, PMCID: PMC3742925, DOI: 10.1523/jneurosci.5286-12.2013.
- Functional genomic screen of human stem cell differentiation reveals pathways involved in neurodevelopment and neurodegenerationZhang Y, Schulz VP, Reed BD, Wang Z, Pan X, Mariani J, Euskirchen G, Snyder MP, Vaccarino FM, Ivanova N, Weissman SM, Szekely AM. Functional genomic screen of human stem cell differentiation reveals pathways involved in neurodevelopment and neurodegeneration. Proceedings Of The National Academy Of Sciences Of The United States Of America 2013, 110: 12361-12366. PMID: 23836664, PMCID: PMC3725080, DOI: 10.1073/pnas.1309725110.
- Cellular and Molecular Pathology in Tourette SyndromeVaccarino F, Kataoka-Sasaki Y, Lennington J. Cellular and Molecular Pathology in Tourette Syndrome. 2013, 205-220. DOI: 10.1093/med/9780199796267.003.0010.
- Cortical Gyrification Induced by Fibroblast Growth Factor 2 in the Mouse BrainRash BG, Tomasi S, Lim HD, Suh CY, Vaccarino FM. Cortical Gyrification Induced by Fibroblast Growth Factor 2 in the Mouse Brain. Journal Of Neuroscience 2013, 33: 10802-10814. PMID: 23804101, PMCID: PMC3693057, DOI: 10.1523/jneurosci.3621-12.2013.
- Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cellsAbyzov A, Mariani J, Palejev D, Zhang Y, Haney MS, Tomasini L, Ferrandino AF, Rosenberg Belmaker LA, Szekely A, Wilson M, Kocabas A, Calixto NE, Grigorenko EL, Huttner A, Chawarska K, Weissman S, Urban AE, Gerstein M, Vaccarino FM. Somatic copy number mosaicism in human skin revealed by induced pluripotent stem cells. Nature 2012, 492: 438-442. PMID: 23160490, PMCID: PMC3532053, DOI: 10.1038/nature11629.
- Oligodendrocyte Regeneration after Neonatal Hypoxia Requires FoxO1-Mediated p27Kip1 ExpressionJablonska B, Scafidi J, Aguirre A, Vaccarino F, Nguyen V, Borok E, Horvath TL, Rowitch DH, Gallo V. Oligodendrocyte Regeneration after Neonatal Hypoxia Requires FoxO1-Mediated p27Kip1 Expression. Journal Of Neuroscience 2012, 32: 14775-14793. PMID: 23077062, PMCID: PMC3517297, DOI: 10.1523/jneurosci.2060-12.2012.
- Age-related changes of gene expression in the neocortex: Preliminary data on RNA-Seq of the transcriptome in three functionally distinct cortical areasNaumova OY, Palejev D, Vlasova NV, Lee M, Rychkov SY, Babich ON, Vaccarino F, Grigorenko EL. Age-related changes of gene expression in the neocortex: Preliminary data on RNA-Seq of the transcriptome in three functionally distinct cortical areas. Development And Psychopathology 2012, 24: 1427-1442. PMID: 23062308, PMCID: PMC3539811, DOI: 10.1017/s0954579412000818.
- Neurobiology meets genomic science: The promise of human-induced pluripotent stem cellsStevens HE, Mariani J, Coppola G, Vaccarino FM. Neurobiology meets genomic science: The promise of human-induced pluripotent stem cells. Development And Psychopathology 2012, 24: 1443-1451. PMID: 23062309, PMCID: PMC3513939, DOI: 10.1017/s095457941200082x.
- Prenatal stress delays inhibitory neuron progenitor migration in the developing neocortexStevens HE, Su T, Yanagawa Y, Vaccarino FM. Prenatal stress delays inhibitory neuron progenitor migration in the developing neocortex. Psychoneuroendocrinology 2012, 38: 509-521. PMID: 22910687, PMCID: PMC3532962, DOI: 10.1016/j.psyneuen.2012.07.011.
- Modeling human cortical development in vitro using induced pluripotent stem cellsMariani J, Simonini MV, Palejev D, Tomasini L, Coppola G, Szekely AM, Horvath TL, Vaccarino FM. Modeling human cortical development in vitro using induced pluripotent stem cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 12770-12775. PMID: 22761314, PMCID: PMC3411972, DOI: 10.1073/pnas.1202944109.
- Environmental Enrichment Increases the GFAP+ Stem Cell Pool and Reverses Hypoxia-Induced Cognitive Deficits in Juvenile MiceSalmaso N, Silbereis J, Komitova M, Mitchell P, Chapman K, Ment LR, Schwartz ML, Vaccarino FM. Environmental Enrichment Increases the GFAP+ Stem Cell Pool and Reverses Hypoxia-Induced Cognitive Deficits in Juvenile Mice. Journal Of Neuroscience 2012, 32: 8930-8939. PMID: 22745493, PMCID: PMC3399175, DOI: 10.1523/jneurosci.1398-12.2012.
- Learning and Memory Depend on Fibroblast Growth Factor Receptor 2 Functioning in HippocampusStevens HE, Jiang GY, Schwartz ML, Vaccarino FM. Learning and Memory Depend on Fibroblast Growth Factor Receptor 2 Functioning in Hippocampus. Biological Psychiatry 2012, 71: 1090-1098. PMID: 22541947, PMCID: PMC3371339, DOI: 10.1016/j.biopsych.2012.03.013.
- Impaired motor coordination and disrupted cerebellar architecture in Fgfr1 and Fgfr2 double knockout miceSmith K, Williamson TL, Schwartz ML, Vaccarino FM. Impaired motor coordination and disrupted cerebellar architecture in Fgfr1 and Fgfr2 double knockout mice. Brain Research 2012, 1460: 12-24. PMID: 22578469, PMCID: PMC3361544, DOI: 10.1016/j.brainres.2012.04.002.
- FGF Signaling Expands Embryonic Cortical Surface Area by Regulating Notch-Dependent NeurogenesisRash BG, Lim HD, Breunig JJ, Vaccarino FM. FGF Signaling Expands Embryonic Cortical Surface Area by Regulating Notch-Dependent Neurogenesis. Journal Of Neuroscience 2011, 31: 15604-15617. PMID: 22031906, PMCID: PMC3235689, DOI: 10.1523/jneurosci.4439-11.2011.
- Cortical Glial Fibrillary Acidic Protein-Positive Cells Generate Neurons after Perinatal Hypoxic InjuryBi B, Salmaso N, Komitova M, Simonini MV, Silbereis J, Cheng E, Kim J, Luft S, Ment LR, Horvath TL, Schwartz ML, Vaccarino FM. Cortical Glial Fibrillary Acidic Protein-Positive Cells Generate Neurons after Perinatal Hypoxic Injury. Journal Of Neuroscience 2011, 31: 9205-9221. PMID: 21697371, PMCID: PMC3142780, DOI: 10.1523/jneurosci.0518-11.2011.
- Toward a Novel Endogenous Anxiolytic Factor, Fibroblast Growth Factor 2Salmaso N, Vaccarino FM. Toward a Novel Endogenous Anxiolytic Factor, Fibroblast Growth Factor 2. Biological Psychiatry 2011, 69: 508-509. PMID: 21353835, PMCID: PMC3058122, DOI: 10.1016/j.biopsych.2011.01.017.
- Induced pluripotent stem cells: A new tool to confront the challenge of neuropsychiatric disordersVaccarino FM, Stevens HE, Kocabas A, Palejev D, Szekely A, Grigorenko EL, Weissman S. Induced pluripotent stem cells: A new tool to confront the challenge of neuropsychiatric disorders. Neuropharmacology 2011, 60: 1355-1363. PMID: 21371482, PMCID: PMC3087494, DOI: 10.1016/j.neuropharm.2011.02.021.
- Annual Research Review: The promise of stem cell research for neuropsychiatric disordersVaccarino FM, Urban AE, Stevens HE, Szekely A, Abyzov A, Grigorenko EL, Gerstein M, Weissman S. Annual Research Review: The promise of stem cell research for neuropsychiatric disorders. Journal Of Child Psychology And Psychiatry 2011, 52: 504-516. PMID: 21204834, PMCID: PMC3124336, DOI: 10.1111/j.1469-7610.2010.02348.x.
- Overview of Brain DevelopmentVaccarino F, Leckman J. Overview of Brain Development. 2010, 5-22. DOI: 10.1093/med/9780195398212.003.0001.
- Pyramidal Neurons Are Generated from Oligodendroglial Progenitor Cells in Adult Piriform CortexGuo F, Maeda Y, Ma J, Xu J, Horiuchi M, Miers L, Vaccarino F, Pleasure D. Pyramidal Neurons Are Generated from Oligodendroglial Progenitor Cells in Adult Piriform Cortex. Journal Of Neuroscience 2010, 30: 12036-12049. PMID: 20826667, PMCID: PMC2940828, DOI: 10.1523/jneurosci.1360-10.2010.
- Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonatesSilbereis J, Heintz T, Taylor MM, Ganat Y, Ment LR, Bordey A, Vaccarino F. Astroglial cells in the external granular layer are precursors of cerebellar granule neurons in neonates. Molecular And Cellular Neuroscience 2010, 44: 362-373. PMID: 20470892, PMCID: PMC2900521, DOI: 10.1016/j.mcn.2010.05.001.
- Fgfr2 Is Required for the Development of the Medial Prefrontal Cortex and Its Connections with Limbic CircuitsStevens HE, Smith KM, Maragnoli ME, Fagel D, Borok E, Shanabrough M, Horvath TL, Vaccarino FM. Fgfr2 Is Required for the Development of the Medial Prefrontal Cortex and Its Connections with Limbic Circuits. Journal Of Neuroscience 2010, 30: 5590-5602. PMID: 20410112, PMCID: PMC2868832, DOI: 10.1523/jneurosci.5837-09.2010.
- Exciting News from the Adult Mouse Subventricular ZoneKomitova M, Vaccarino FM. Exciting News from the Adult Mouse Subventricular Zone. Frontiers In Neuroscience 2010, 2: 1. PMID: 20582263, PMCID: PMC2858615, DOI: 10.3389/neuro.22.001.2010.
- Neural Stem Cell Regulation, Fibroblast Growth Factors, and the Developmental Origins of Neuropsychiatric DisordersStevens HE, Smith KM, Rash BG, Vaccarino FM. Neural Stem Cell Regulation, Fibroblast Growth Factors, and the Developmental Origins of Neuropsychiatric Disorders. Frontiers In Neuroscience 2010, 4: 59. PMID: 20877431, PMCID: PMC2944667, DOI: 10.3389/fnins.2010.00059.
- Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndromeKataoka Y, Kalanithi PS, Grantz H, Schwartz ML, Saper C, Leckman JF, Vaccarino FM. Decreased number of parvalbumin and cholinergic interneurons in the striatum of individuals with Tourette syndrome. The Journal Of Comparative Neurology 2009, 518: 277-291. PMID: 19941350, PMCID: PMC2846837, DOI: 10.1002/cne.22206.
- Increased Brain Size in Autism—What It Will Take to Solve a MysteryVaccarino FM, Smith KM. Increased Brain Size in Autism—What It Will Take to Solve a Mystery. Biological Psychiatry 2009, 66: 313-315. PMID: 19643218, PMCID: PMC2803090, DOI: 10.1016/j.biopsych.2009.06.013.
- Modeling premature brain injury and recoveryScafidi J, Fagel DM, Ment LR, Vaccarino FM. Modeling premature brain injury and recovery. International Journal Of Developmental Neuroscience 2009, 27: 863-871. PMID: 19482072, PMCID: PMC2783901, DOI: 10.1016/j.ijdevneu.2009.05.009.
- Hypoxic Injury during Neonatal Development in Murine Brain: Correlation between In Vivo DTI Findings and Behavioral AssessmentChahboune H, Ment LR, Stewart WB, Rothman DL, Vaccarino FM, Hyder F, Schwartz ML. Hypoxic Injury during Neonatal Development in Murine Brain: Correlation between In Vivo DTI Findings and Behavioral Assessment. Cerebral Cortex 2009, 19: 2891-2901. PMID: 19380380, PMCID: PMC2774398, DOI: 10.1093/cercor/bhp068.
- Precursors with Glial Fibrillary Acidic Protein Promoter Activity Transiently Generate GABA Interneurons in the Postnatal CerebellumSilbereis J, Cheng E, Ganat YM, Ment LR, Vaccarino FM. Precursors with Glial Fibrillary Acidic Protein Promoter Activity Transiently Generate GABA Interneurons in the Postnatal Cerebellum. Stem Cells 2009, 27: 1152-1163. PMID: 19418461, PMCID: PMC2903623, DOI: 10.1002/stem.18.
- Fgfr1 Is Required for Cortical Regeneration and Repair after Perinatal HypoxiaFagel DM, Ganat Y, Cheng E, Silbereis J, Ohkubo Y, Ment LR, Vaccarino FM. Fgfr1 Is Required for Cortical Regeneration and Repair after Perinatal Hypoxia. Journal Of Neuroscience 2009, 29: 1202-1211. PMID: 19176828, PMCID: PMC2768410, DOI: 10.1523/jneurosci.4516-08.2009.
- Regulation of Cerebral Cortical Size and Neuron Number by Fibroblast Growth Factors: Implications for AutismVaccarino FM, Grigorenko EL, Smith KM, Stevens HE. Regulation of Cerebral Cortical Size and Neuron Number by Fibroblast Growth Factors: Implications for Autism. Journal Of Autism And Developmental Disorders 2008, 39: 511-520. PMID: 18850329, PMCID: PMC2847619, DOI: 10.1007/s10803-008-0653-8.
- Decrease in excitatory neurons, astrocytes and proliferating progenitors in the cerebral cortex of mice lacking exon 3 from the Fgf2 geneChen K, Ohkubo Y, Shin D, Doetschman T, Sanford LP, Li H, Vaccarino FM. Decrease in excitatory neurons, astrocytes and proliferating progenitors in the cerebral cortex of mice lacking exon 3 from the Fgf2 gene. BMC Neuroscience 2008, 9: 94. PMID: 18826624, PMCID: PMC2577114, DOI: 10.1186/1471-2202-9-94.
- Prefrontal GABA deficits in schizophrenia: Interneuron pathology and network dysfunctionPittenger C, Vaccarino F, Krystal J. Prefrontal GABA deficits in schizophrenia: Interneuron pathology and network dysfunction. Cell Science Reviews. 2008; 5(1):ISSN 1742-8130.
- Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrusBreunig JJ, Silbereis J, Vaccarino FM, Šestan N, Rakic P. Notch regulates cell fate and dendrite morphology of newborn neurons in the postnatal dentate gyrus. Proceedings Of The National Academy Of Sciences Of The United States Of America 2007, 104: 20558-20563. PMID: 18077357, PMCID: PMC2154470, DOI: 10.1073/pnas.0710156104.
- Deficiency in Inhibitory Cortical Interneurons Associates with Hyperactivity in Fibroblast Growth Factor Receptor 1 Mutant MiceSmith K, Fagel DM, Stevens HE, Rabenstein RL, Maragnoli ME, Ohkubo Y, Picciotto MR, Schwartz ML, Vaccarino FM. Deficiency in Inhibitory Cortical Interneurons Associates with Hyperactivity in Fibroblast Growth Factor Receptor 1 Mutant Mice. Biological Psychiatry 2007, 63: 953-962. PMID: 17988653, DOI: 10.1016/j.biopsych.2007.09.020.
- Astroglial Cells in Development, Regeneration, and RepairVaccarino FM, Fagel DM, Ganat Y, Maragnoli ME, Ment LR, Ohkubo Y, Schwartz ML, Silbereis J, Smith KM. Astroglial Cells in Development, Regeneration, and Repair. The Neuroscientist 2007, 13: 173-185. PMID: 17404377, DOI: 10.1177/1073858406298336.
- From Genes to Brain: Developmental NeurobiologyLeckman J, Vaccarino F, Lombroso P. From Genes to Brain: Developmental Neurobiology. In: Martin A, editor. Child and Adolescent Psychiatry, A Comprehensive Textbook Philadelphia: Lippincott Willliams & Wilkins; 2007.
- Early Postnatal Astroglial Cells Produce Multilineage Precursors and Neural Stem Cells In VivoGanat YM, Silbereis J, Cave C, Ngu H, Anderson GM, Ohkubo Y, Ment LR, Vaccarino FM. Early Postnatal Astroglial Cells Produce Multilineage Precursors and Neural Stem Cells In Vivo. Journal Of Neuroscience 2006, 26: 8609-8621. PMID: 16914687, PMCID: PMC6674357, DOI: 10.1523/jneurosci.2532-06.2006.
- Midline radial glia translocation and corpus callosum formation require FGF signalingSmith KM, Ohkubo Y, Maragnoli ME, Rašin M, Schwartz ML, Šestan N, Vaccarino FM. Midline radial glia translocation and corpus callosum formation require FGF signaling. Nature Neuroscience 2006, 9: 787-797. PMID: 16715082, DOI: 10.1038/nn1705.
- Cortical neurogenesis enhanced by chronic perinatal hypoxiaFagel DM, Ganat Y, Silbereis J, Ebbitt T, Stewart W, Zhang H, Ment LR, Vaccarino FM. Cortical neurogenesis enhanced by chronic perinatal hypoxia. Experimental Neurology 2006, 199: 77-91. PMID: 15916762, DOI: 10.1016/j.expneurol.2005.04.006.
- Annotation: Tourette syndrome: a relentless drumbeat – driven by misguided brain oscillationsLeckman JF, Vaccarino FM, Kalanithi PS, Rothenberger A. Annotation: Tourette syndrome: a relentless drumbeat – driven by misguided brain oscillations. Journal Of Child Psychology And Psychiatry 2006, 47: 537-550. PMID: 16712630, DOI: 10.1111/j.1469-7610.2006.01620.x.
- Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndromeKalanithi PS, Zheng W, Kataoka Y, DiFiglia M, Grantz H, Saper CB, Schwartz ML, Leckman JF, Vaccarino FM. Altered parvalbumin-positive neuron distribution in basal ganglia of individuals with Tourette syndrome. Proceedings Of The National Academy Of Sciences Of The United States Of America 2005, 102: 13307-13312. PMID: 16131542, PMCID: PMC1201574, DOI: 10.1073/pnas.0502624102.
- Otx2 Regulates Subtype Specification and Neurogenesis in the MidbrainVernay B, Koch M, Vaccarino F, Briscoe J, Simeone A, Kageyama R, Ang SL. Otx2 Regulates Subtype Specification and Neurogenesis in the Midbrain. Journal Of Neuroscience 2005, 25: 4856-4867. PMID: 15888661, PMCID: PMC6724764, DOI: 10.1523/jneurosci.5158-04.2005.
- Chronic neonatal hypoxia leads to long term decreases in the volume and cell number of the rat cerebral cortexSchwartz ML, Vaccarino F, Chacon M, Yan WL, Ment LR, Stewart WB. Chronic neonatal hypoxia leads to long term decreases in the volume and cell number of the rat cerebral cortex. Seminars In Perinatology 2004, 28: 379-388. PMID: 15693394, DOI: 10.1053/j.semperi.2004.10.009.
- Fibroblast Growth Factor Receptor 1 Is Required for the Proliferation of Hippocampal Progenitor Cells and for Hippocampal Growth in MouseOhkubo Y, Uchida AO, Shin D, Partanen J, Vaccarino FM. Fibroblast Growth Factor Receptor 1 Is Required for the Proliferation of Hippocampal Progenitor Cells and for Hippocampal Growth in Mouse. Journal Of Neuroscience 2004, 24: 6057-6069. PMID: 15240797, PMCID: PMC6729672, DOI: 10.1523/jneurosci.1140-04.2004.
- Injury and repair in developing brainVaccarino FM, Ment LR. Injury and repair in developing brain. Archives Of Disease In Childhood - Fetal And Neonatal Edition 2004, 89: f190. PMID: 15102716, PMCID: PMC1721670, DOI: 10.1136/adc.2003.043661.
- Loss of Glutamatergic Pyramidal Neurons in Frontal and Temporal Cortex Resulting from Attenuation of FGFR1 Signaling Is Associated with Spontaneous Hyperactivity in MiceShin DM, Korada S, Raballo R, Shashikant CS, Simeone A, Taylor JR, Vaccarino F. Loss of Glutamatergic Pyramidal Neurons in Frontal and Temporal Cortex Resulting from Attenuation of FGFR1 Signaling Is Associated with Spontaneous Hyperactivity in Mice. Journal Of Neuroscience 2004, 24: 2247-2258. PMID: 14999075, PMCID: PMC6730438, DOI: 10.1523/jneurosci.5285-03.2004.
- Fibroblast Growth Factor 2 Is Required for Maintaining the Neural Stem Cell Pool in the Mouse Brain Subventricular ZoneZheng W, Nowakowski RS, Vaccarino FM. Fibroblast Growth Factor 2 Is Required for Maintaining the Neural Stem Cell Pool in the Mouse Brain Subventricular Zone. Developmental Neuroscience 2004, 26: 181-196. PMID: 15711059, DOI: 10.1159/000082136.
- Modeling thought and feelings: the why, what and whereabouts of animals in psychiatryVaccarino FM. Modeling thought and feelings: the why, what and whereabouts of animals in psychiatry. Brazilian Journal Of Psychiatry 2003, 25: 3-4. PMID: 12975672, DOI: 10.1590/s1516-44462003000100002.
- Overview of Brain DevelopmentVaccarino F, Leckman J. Overview of Brain Development. In: Martin A, Scahill L, Charney D, Leckman J, editors. Pediatric Psychopharmacology Oxford, England: Oxford University Press; 2003. p.3-19.
- Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zoneGanat Y, Soni S, Chacon M, Schwartz ML, Vaccarino FM. Chronic hypoxia up-regulates fibroblast growth factor ligands in the perinatal brain and induces fibroblast growth factor-responsive radial glial cells in the sub-ependymal zone. Neuroscience 2002, 112: 977-991. PMID: 12088755, DOI: 10.1016/s0306-4522(02)00060-x.
- Fibroblast Growth Factor 2 Is Necessary for the Growth of Glutamate Projection Neurons in the Anterior NeocortexKorada S, Zheng W, Basilico C, Schwartz ML, Vaccarino FM. Fibroblast Growth Factor 2 Is Necessary for the Growth of Glutamate Projection Neurons in the Anterior Neocortex. Journal Of Neuroscience 2002, 22: 863-875. PMID: 11826116, PMCID: PMC6758485, DOI: 10.1523/jneurosci.22-03-00863.2002.
- Genes and Developmental NeurobiologyLeckman J, Vaccarino F, Lombroso P. Genes and Developmental Neurobiology. In: Lewis M, editor. Child and Adolescent Psychiatry, A Comprehensive Textbook 3 ed. Philadelphia: Lippincott Willliams & Wilkins; 2002.
- Stem Cells in Neurodevelopment and PlasticityVaccarino F, Ganat Y, Zhang Y, Zheng W. Stem Cells in Neurodevelopment and Plasticity. Neuropsychopharmacology 2001, 25: 805-815. PMID: 11750175, DOI: 10.1016/s0893-133x(01)00349-9.
- Stem Cells and Neuronal Progenitors and Their Diversity in the CNS: Are Time and Place Important?Vaccarino F. Stem Cells and Neuronal Progenitors and Their Diversity in the CNS: Are Time and Place Important? The Neuroscientist 2000, 6: 338-352. DOI: 10.1177/107385840000600508.
- Basic Fibroblast Growth Factor (Fgf2) Is Necessary for Cell Proliferation and Neurogenesis in the Developing Cerebral CortexRaballo R, Rhee J, Lyn-Cook R, Leckman J, Schwartz M, Vaccarino F. Basic Fibroblast Growth Factor (Fgf2) Is Necessary for Cell Proliferation and Neurogenesis in the Developing Cerebral Cortex. Journal Of Neuroscience 2000, 20: 5012-5023. PMID: 10864959, PMCID: PMC6772267, DOI: 10.1523/jneurosci.20-13-05012.2000.
- The subcellular localization of OTX2 is cell-type specific and developmentally regulated in the mouse retinaBaas D, Bumsted KM, Martinez JA, Vaccarino FM, Wikler KC, Barnstable CJ. The subcellular localization of OTX2 is cell-type specific and developmentally regulated in the mouse retina. Brain Research 2000, 78: 26-37. PMID: 10891582, DOI: 10.1016/s0169-328x(00)00060-7.
- Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia geneAcampora D, Postiglione M, Avantaggiato V, Di Bonito M, Vaccarino F, Michaud J, Simeone A. Progressive impairment of developing neuroendocrine cell lineages in the hypothalamus of mice lacking the Orthopedia gene. Genes & Development 1999, 13: 2787-2800. PMID: 10557207, PMCID: PMC317121, DOI: 10.1101/gad.13.21.2787.
- Erratum: Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesisVaccarino F, Schwartz M, Raballo R, Nilsen J, Rhee J, Zhou M, Doetschman T, Coffin J, Wyland J, Hung Y. Erratum: Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nature Neuroscience 1999, 2: 848-848. PMID: 10461229, DOI: 10.1038/12226.
- Identification, Chromosomal Assignment, and Expression Analysis of the Human Homeodomain-Containing Gene Orthopedia (OTP)Lin X, State M, Vaccarino F, Greally J, Hass M, Leckman J. Identification, Chromosomal Assignment, and Expression Analysis of the Human Homeodomain-Containing Gene Orthopedia (OTP). Genomics 1999, 60: 96-104. PMID: 10458915, DOI: 10.1006/geno.1999.5882.
- Erratum: Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesisVaccarino F, Schwartz M, Raballo R, Nilsen J, Rhee J, Zhou M, Doetschman T, Coffin J, Wyland J, Hung Y. Erratum: Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nature Neuroscience 1999, 2: 485-485. DOI: 10.1038/8163.
- Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesisVaccarino F, Schwartz M, Raballo R, Nilsen J, Rhee J, Zhou M, Doetschman T, Coffin J, Wyland J, Hung Y. Changes in cerebral cortex size are governed by fibroblast growth factor during embryogenesis. Nature Neuroscience 1999, 2: 246-253. PMID: 10195217, DOI: 10.1038/6350.
- 6 Fibroblast Growth Factor Signaling Regulates Growth and Morphogenesis at Multiple Steps during Brain Development11This work represents a collaboration between the laboratories of the first two authors.Vaccarino F, Schwartz M, Raballo R, Rhee J, Lyn-Cook R. 6 Fibroblast Growth Factor Signaling Regulates Growth and Morphogenesis at Multiple Steps during Brain Development11This work represents a collaboration between the laboratories of the first two authors. 1999, 46: 179-200. PMID: 10417880, DOI: 10.1016/s0070-2153(08)60329-4.
- Development of the Cerebral CortexVACCARINO F, Vaccarino F, LOMBROSO P, Lombroso PJ, Lombroso P, Lombroso P. Development of the Cerebral Cortex. Journal Of The American Academy Of Child & Adolescent Psychiatry 1998, 37: 789-790. PMID: 9666636, DOI: 10.1097/00004583-199807000-00020.
- Dlx-2 homeobox gene controls neuronal differentiation in primary cultures of developing basal gangliaDing M, Robel L, James A, Eisenstat D, Leckman J, Rubenstein J, Vaccarino F. Dlx-2 homeobox gene controls neuronal differentiation in primary cultures of developing basal ganglia. Journal Of Molecular Neuroscience 1997, 8: 93-113. PMID: 9188040, DOI: 10.1007/bf02736776.
- Characterization and Sequence Analysis of the Human Homeobox-Containing GeneGBX2Lin X, Swaroop A, Vaccarino F, Murtha M, Haas M, Ji X, Ruddle F, Leckman J. Characterization and Sequence Analysis of the Human Homeobox-Containing GeneGBX2. Genomics 1996, 31: 335-342. PMID: 8838315, DOI: 10.1006/geno.1996.0056.
- Fibroblast growth factor 2 increases Otx2 expression in precursor cells from mammalian telencephalonRobel L, Ding M, James A, Lin X, Simeone A, Leckman J, Vaccarino F. Fibroblast growth factor 2 increases Otx2 expression in precursor cells from mammalian telencephalon. Journal Of Neuroscience 1995, 15: 7879-7891. PMID: 8613727, PMCID: PMC6577918, DOI: 10.1523/jneurosci.15-12-07879.1995.
- Basic fibroblast growth factor increases the number of excitatory neurons containing glutamate in the cerebral cortex.Vaccarino FM, Schwartz ML, Hartigan D, Leckman JF. Basic fibroblast growth factor increases the number of excitatory neurons containing glutamate in the cerebral cortex. Cerebral Cortex 1995, 5: 64-78. PMID: 7719131, DOI: 10.1093/cercor/5.1.64.
- Excitatory amino acid receptors in glial progenitor cells: Molecular and functional propertiesGallo V, Patneau D, Mayer M, Vaccarino F. Excitatory amino acid receptors in glial progenitor cells: Molecular and functional properties. Glia 1994, 11: 94-101. PMID: 7927651, DOI: 10.1002/glia.440110204.
- Induction of immediate early genes by cyclic AMP in primary cultures of neurons from rat cerebral cortexVaccarino FM, Hayward MD, Le HN, Hartigan DJ, Duman RS, Nestler EJ. Induction of immediate early genes by cyclic AMP in primary cultures of neurons from rat cerebral cortex. Brain Research 1993, 19: 76-82. PMID: 8103187, DOI: 10.1016/0169-328x(93)90151-e.
- Differential induction of immediate early genes by excitatory amino acid receptor types in primary cultures of cortical and striatal neuronsVaccarino F, Hayward M, Nestler E, Duman R, Tallman J. Differential induction of immediate early genes by excitatory amino acid receptor types in primary cultures of cortical and striatal neurons. Brain Research 1992, 12: 233-241. PMID: 1347632, DOI: 10.1016/0169-328x(92)90089-t.
- Modulation of Protein Kinase C Translocation by Excitatory and Inhibitory Amino Acids in Primary Cultures of NeuronsVaccarino F, Liljequist S, Tallman J. Modulation of Protein Kinase C Translocation by Excitatory and Inhibitory Amino Acids in Primary Cultures of Neurons. Journal Of Neurochemistry 1991, 57: 391-396. PMID: 1649249, DOI: 10.1111/j.1471-4159.1991.tb03765.x.
- Primary cultures of corticostriatal cells from newborn rats: A model to study muscarinic receptor subtypes regulation and functionEva C, Bovolin P, Balzac F, Botta C, Ricci Gamalero S, Vaccarino F. Primary cultures of corticostriatal cells from newborn rats: A model to study muscarinic receptor subtypes regulation and function. Journal Of Molecular Neuroscience 1990, 2: 143. PMID: 2177349, DOI: 10.1007/bf02896839.
- Subsets of GABAergic neurons in dissociated cell cultures of neonatal rat cerebral cortex show co-localization with specific modulator peptides.Alho H, Ferrarese C, Vicini S, Vaccarino F. Subsets of GABAergic neurons in dissociated cell cultures of neonatal rat cerebral cortex show co-localization with specific modulator peptides. Brain Research 1988, 467: 193-204. PMID: 3378169, DOI: 10.1016/0165-3806(88)90023-5.
- Le cellule del cervelloVaccarino F. Le cellule del cervello. Medicina e Dossier. 1988; 3:27-32.
- The organ of memory: recent biological approachesVaccarino F. The organ of memory: recent biological approaches. Methodologia. 1988; 6:7-23.
- Glutamate receptors, protein kinase C translocation, and gangliosides.Vaccarino FM. Glutamate receptors, protein kinase C translocation, and gangliosides. Psychopharmacology Bulletin 1988, 24: 403-7. PMID: 2856417.
- Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of cerebellar neurons.Vaccarino F, Guidotti A, Costa E. Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of cerebellar neurons. Proceedings Of The National Academy Of Sciences Of The United States Of America 1987, 84: 8707-8711. PMID: 2825205, PMCID: PMC299615, DOI: 10.1073/pnas.84.23.8707.
- Subcellular Location and Neuronal Release of Diazepam Binding InhibitorFerrarese C, Vaccarino F, Alho H, Mellstrom B, Costa E, Guidotti A. Subcellular Location and Neuronal Release of Diazepam Binding Inhibitor. Journal Of Neurochemistry 1987, 48: 1093-1102. PMID: 3819722, DOI: 10.1111/j.1471-4159.1987.tb05632.x.
- Dissociated primary culture of corticostriatal cells from newborn rats: a model for studying function and modulation of muscarinic receptorsEva C, Vaccarino F, Bovolin P, Alho H, Ricci Gamalero S, Gennazzani E, Costa E. Dissociated primary culture of corticostriatal cells from newborn rats: a model for studying function and modulation of muscarinic receptors. European Journal of Pharmacology. 1987; 69-71.
- Coexistence of GABA receptors and GABA-modulin in primary cultures of rat cerebellar granule cellsVaccarino FM, Alho H, Santi MR, Guidotti A. Coexistence of GABA receptors and GABA-modulin in primary cultures of rat cerebellar granule cells. Journal Of Neuroscience 1987, 7: 65-76. PMID: 3027277, PMCID: PMC6568852, DOI: 10.1523/jneurosci.07-01-00065.1987.
- Modulation of gamma-aminobutyric acid-mediated inhibitory synaptic currents in dissociated cortical cell cultures.Vicini S, Alho H, Costa E, Mienville JM, Santi MR, Vaccarino FM. Modulation of gamma-aminobutyric acid-mediated inhibitory synaptic currents in dissociated cortical cell cultures. Proceedings Of The National Academy Of Sciences Of The United States Of America 1986, 83: 9269-9273. PMID: 3097650, PMCID: PMC387117, DOI: 10.1073/pnas.83.23.9269.
- TBPS Binding to the GABA/Benzodiazepine Receptor Complex in Cultured Cerebellar Granule CellsGallo V, Wise B, Vaccarino F, Guidotti A. TBPS Binding to the GABA/Benzodiazepine Receptor Complex in Cultured Cerebellar Granule Cells. 1986, 97-100. DOI: 10.1007/978-3-642-70690-5_19.
- Residual benzodiazepine (BZ) binding in the cortex ofpcd mutant cerebella and qualitative BZ binding in the deep cerebellar nuclei of control and mutant mice: an autoradiographic studyVaccarino F, Ghetti B, Nurnberger J. Residual benzodiazepine (BZ) binding in the cortex ofpcd mutant cerebella and qualitative BZ binding in the deep cerebellar nuclei of control and mutant mice: an autoradiographic study. Brain Research 1985, 343: 70-78. PMID: 2994831, DOI: 10.1016/0006-8993(85)91159-x.
- gamma-Aminobutyric acid- and benzodiazepine-induced modulation of [35S]- t-butylbicyclophosphorothionate binding to cerebellar granule cellsGallo V, Wise BC, Vaccarino F, Guidotti A. gamma-Aminobutyric acid- and benzodiazepine-induced modulation of [35S]- t-butylbicyclophosphorothionate binding to cerebellar granule cells. Journal Of Neuroscience 1985, 5: 2432-2438. PMID: 4032005, PMCID: PMC6565307, DOI: 10.1523/jneurosci.05-09-02432.1985.
- GABA‐Modulin: A Synaptosomal Basic Protein that Differs from Small Myelin Basic Protein of Rat BrainVaccarino F, Tronconi B, Panula P, Guidotti A, Costa E. GABA‐Modulin: A Synaptosomal Basic Protein that Differs from Small Myelin Basic Protein of Rat Brain. Journal Of Neurochemistry 1985, 44: 278-290. PMID: 3964832, DOI: 10.1111/j.1471-4159.1985.tb07142.x.
- GABAergic synapses supramolecular organization and biochemical regulationGuidotti A, Corda MG, Wise BC, Vaccarino F, Costa E. GABAergic synapses supramolecular organization and biochemical regulation. Neuropharmacology 1983, 22: 1471-1479. PMID: 6322041, DOI: 10.1016/0028-3908(83)90115-6.
- In vivo modulation of brain dop amine recognition sites: A possible model for emission computed tomography studiesFerrero P, Vaccarino F, Guidotti A, Costa E, Di Chiro G. In vivo modulation of brain dop amine recognition sites: A possible model for emission computed tomography studies. Neuropharmacology 1983, 22: 791-795. PMID: 6604240, DOI: 10.1016/0028-3908(83)90105-3.
- Role of GABA-modulin and of an endogenous effector of β-carboline binding sites in the GABA-benzodiazepine receptor interactionGuidotti A, Corda M, Vaccarino F, Wise B. Role of GABA-modulin and of an endogenous effector of β-carboline binding sites in the GABA-benzodiazepine receptor interaction. In: Bowery N, Martin I, Rang H, Simmonds M, editors. Action and interaction of GABA and benzodiazepine New York: Raven Press; 1983.
- Loss of Purkinje cell‐associated benzodiazepine receptors spares a high affinity subpopulation: A study with pcd mutant miceVaccarino FM, Ghetti B, Wade SE, Rea MA, Aprison MH. Loss of Purkinje cell‐associated benzodiazepine receptors spares a high affinity subpopulation: A study with pcd mutant mice. Journal Of Neuroscience Research 1983, 9: 311-323. PMID: 6304330, DOI: 10.1002/jnr.490090308.
Clinical Trials
Conditions | Study Title |
---|---|
Child Development & Autism | Understanding Neurodevelopment in Autism |