David Calderwood, PhD
Research & Publications
Biography
News
Research Summary
Integrins, transmembrane adhesion receptors, mediate cell adhesion and permit bidirectional transmission of mechanical force and biochemical signals across the plasma membrane. Integrin-dependent cellular activities such as adhesion, migration, proliferation, and survival rely upon the dynamic interaction of integrin cytoplasmic tails with intracellular integrin tail-binding proteins.
We use cell-biological, biochemical, and structural techniques to identify and characterize the interactions of integrin cytoplasmic tails with intracellular ligands, and to decipher how these interactions are regulated. This has allowed us to establish talin as a key regulator of integrin activation; to show that integrin binding to the actin crosslinking protein filamin controls cell migration and modulates integrin-talin interactions; to reveal that kindlins modulate talin-mediated integrin activation in an integrin-specific fashion; and to characterize interactions of the integrin-linked kinase. Ongoing studies
aim to extend these observations, to characterize the molecular basis and functional significance of new interactions between integrin cytoplasmic tails and cytoskeletal and signaling proteins, and to identify novel mechanisms by which specific integrin-associated proteins are regulated.
Specialized Terms: Integrin; Cell adhesion; Cell migration; Cytoskeleton; Structural biology
Extensive Research Description
Integrins are essential heterodimeric adhesion receptors formed by the non-covalent association of a and ß subunits. Each subunit is a type I transmembrane glycoprotein that has relatively large extracellular domains and a generally short cytoplasmic tail. Humans contain 18 a and 8 ß subunits that combine to produce at least 24 different heterodimers, each of which can bind to a specific repertoire of cell surface, ECM or soluble protein ligands. Cell-cell and cell-substratum adhesion is mediated by the binding of integrin extracellular domains to diverse protein ligands, however, cellular control of these adhesive interactions and their translation into dynamic cellular responses, such as cell spreading or migration, requires the integrin cytoplasmic tails. These short tails bind to intracellular ligands that connect the receptors to signaling pathways and cytoskeletal networks. Hence, by binding both extracellular and intracellular ligands, integrins provide a transmembrane link for the bidirectional transmission of mechanical force and biochemical signals across the plasma membrane.
We have found that talin binds to integrin ß subunit cytoplasmic tails through the FERM domain within the talin head. Integrin binding occurs via a variant of the classical PTB domain-NPxY interaction and, in addition to linking integrins to actin stress fibers, this interaction induces conformational changes in the integrin ectodomains that regulate integrin ligand-binding affinity (integrin activation). Tight regulation of integrin activation is essential because it controls cell adhesion, migration, and assembly of an extracellular matrix. Hence integrin activation is a critical step in angiogenesis, tumor cell metastasis, embryonic development, cardiac function and the immune response, and cellular control of integrin activation plays important roles in health and disease throughout development and during the course of adult life.
More recently we have investigated the binding of another class of FERM domain
proteins, the kindlins. Kindlins, like talins, contain an atypical FERM domain and we predict them to be structurally closely related to the integrin-activating talin head domain. We find that kindlins bind integrin ß tails and regulate integrin activation and signaling. The molecular and structural basis for kindlins effects on integrins are the subject of ongoing work.
We have also found that actin cross-linking proteins of the filamin family (filamin A, B and C) bind integrin ß tails, that tight association of filamin with integrin ß tails inhibits cell migration and that filamins can inhibit integrin activation. The regulated binding of filamin to integrin ß tails may therefore provide a control point for regulation of cell migration. Our structural analyses of filamin-integrin interactions revealed the basis for integrin binding and identified regulatory mechanisms including, competition with talin (which provides a mechanism by which filamin binding can suppress integrin activation), auto-inhibition by adjacent filamin domains (which may be released by mechanical stretching) and competition with other filamin-binding proteins. Recently we have shown that filamins are important for initiation of cell migration and that during cell differentiation filamin levels can be controlled by poly-ubiquitinylation and proteasomal degradation. Investigations of the molecular bases for these effects are underway.
Finally we have initiated structural and functional studies on the integrin-linked kinase (ILK); a signaling protein implicated in both integrin activation, possibly through interactions with kindlins, and in signaling downstream of integrins. In collaboration with the Boggon Lab (Pharmacology, Yale) we have solved the structures of a complex between the ILK ankyrin-repeat domain and the 1st LIM domain of the ILK-binding protein PINCH1 or PINCH2. These structures revealed the molecular basis of ILK-PINCH interactions, which are essential for targeting of ILK-PINCH-parvin heterotrimeric complexes to adhesion sites where they act as key signaling nodes. Ongoing structural and functional studies focus on other ILK domains as well as larger multi-domain complexes.
Coauthors
Research Interests
Biochemistry; Cardiovascular Diseases; Cell Adhesion; Cell Biology; Cytoskeleton; Pharmacology; Integrins; Transcellular Cell Migration
Selected Publications
- Use of Ecto-Tagged Integrins to Monitor Integrin Exocytosis and EndocytosisHuet-Calderwood C, Rivera-Molina F, Toomre D, Calderwood D. Use of Ecto-Tagged Integrins to Monitor Integrin Exocytosis and Endocytosis. 2023, 2608: 17-38. PMID: 36653699, PMCID: PMC9999384, DOI: 10.1007/978-1-0716-2887-4_2.
- Fibroblasts secrete fibronectin under lamellipodia in a microtubule- and myosin II–dependent fashionHuet-Calderwood C, Rivera-Molina F, Toomre D, Calderwood D. Fibroblasts secrete fibronectin under lamellipodia in a microtubule- and myosin II–dependent fashion. Journal Of Cell Biology 2022, 222: e202204100. PMID: 36416725, PMCID: PMC9699186, DOI: 10.1083/jcb.202204100.
- Molecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4)Ha B, Yigit S, Natarajan N, Morse E, Calderwood D, Boggon T. Molecular basis for integrin adhesion receptor binding to p21-activated kinase 4 (PAK4). Communications Biology 2022, 5: 1257. PMID: 36385162, PMCID: PMC9669019, DOI: 10.1038/s42003-022-04157-3.
- Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesionsKanchanawong P, Calderwood DA. Organization, dynamics and mechanoregulation of integrin-mediated cell–ECM adhesions. Nature Reviews Molecular Cell Biology 2022, 24: 142-161. PMID: 36168065, PMCID: PMC9892292, DOI: 10.1038/s41580-022-00531-5.
- Abstract 1380: Setdb1 -loss reactivates ERV expression and interferon signaling to induce immune-mediated melanoma clearanceMcGeary M, Damsky W, Daniels D, Micevic G, Song E, Lou H, Calderwood C, Paradkar S, Iwasaki A, Calderwood D, Turk B, Bosenberg M. Abstract 1380: Setdb1 -loss reactivates ERV expression and interferon signaling to induce immune-mediated melanoma clearance. Cancer Research 2022, 82: 1380-1380. DOI: 10.1158/1538-7445.am2022-1380.
- Tousled-like kinase 2 targets ASF1 histone chaperones through client mimicrySimon B, Lou HJ, Huet-Calderwood C, Shi G, Boggon TJ, Turk BE, Calderwood DA. Tousled-like kinase 2 targets ASF1 histone chaperones through client mimicry. Nature Communications 2022, 13: 749. PMID: 35136069, PMCID: PMC8826447, DOI: 10.1038/s41467-022-28427-0.
- A Small-Scale shRNA Screen in Primary Mouse Macrophages Identifies a Role for the Rab GTPase Rab1b in Controlling Salmonella Typhi GrowthSolano-Collado V, Colamarino RA, Calderwood DA, Baldassarre M, Spanò S. A Small-Scale shRNA Screen in Primary Mouse Macrophages Identifies a Role for the Rab GTPase Rab1b in Controlling Salmonella Typhi Growth. Frontiers In Cellular And Infection Microbiology 2021, 11: 660689. PMID: 33898333, PMCID: PMC8059790, DOI: 10.3389/fcimb.2021.660689.
- PPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEKCho E, Lou HJ, Kuruvilla L, Calderwood DA, Turk BE. PPP6C negatively regulates oncogenic ERK signaling through dephosphorylation of MEK. Cell Reports 2021, 34: 108928. PMID: 33789117, PMCID: PMC8068315, DOI: 10.1016/j.celrep.2021.108928.
- Scaffold association factor B (SAFB) is required for expression of prenyltransferases and RAS membrane associationZhou M, Kuruvilla L, Shi X, Viviano S, Ahearn IM, Amendola CR, Su W, Badri S, Mahaffey J, Fehrenbacher N, Skok J, Schlessinger J, Turk BE, Calderwood DA, Philips MR. Scaffold association factor B (SAFB) is required for expression of prenyltransferases and RAS membrane association. Proceedings Of The National Academy Of Sciences Of The United States Of America 2020, 117: 31914-31922. PMID: 33257571, PMCID: PMC7749360, DOI: 10.1073/pnas.2005712117.
- Signalling through cerebral cavernous malformation protein networksSu VL, Calderwood DA. Signalling through cerebral cavernous malformation protein networks. Open Biology 2020, 10: 200263. PMID: 33234067, PMCID: PMC7729028, DOI: 10.1098/rsob.200263.
- Differences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin bindingKadry YA, Maisuria EM, Huet-Calderwood C, Calderwood DA. Differences in self-association between kindlin-2 and kindlin-3 are associated with differential integrin binding. Journal Of Biological Chemistry 2020, 295: 11161-11173. PMID: 32546480, PMCID: PMC7415974, DOI: 10.1074/jbc.ra120.013618.
- Serine phosphorylation of the small phosphoprotein ICAP1 inhibits its nuclear accumulationSu VL, Simon B, Draheim KM, Calderwood DA. Serine phosphorylation of the small phosphoprotein ICAP1 inhibits its nuclear accumulation. Journal Of Biological Chemistry 2020, 295: 3269-3284. PMID: 32005669, PMCID: PMC7062153, DOI: 10.1074/jbc.ra119.009794.
- Chapter 22: Structural and signaling functions of integrinsKadry YA, Calderwood DA. Chapter 22: Structural and signaling functions of integrins. Biochimica Et Biophysica Acta (BBA) - Biomembranes 2020, 1862: 183206. PMID: 31991120, PMCID: PMC7063833, DOI: 10.1016/j.bbamem.2020.183206.
- The subcellular localization of type I p21-activated kinases is controlled by the disordered variable region and polybasic sequencesSun X, Su VL, Calderwood DA. The subcellular localization of type I p21-activated kinases is controlled by the disordered variable region and polybasic sequences. Journal Of Biological Chemistry 2019, 294: 14319-14332. PMID: 31391252, PMCID: PMC6768646, DOI: 10.1074/jbc.ra119.007692.
- Filamin A mediates isotropic distribution of applied force across the actin networkKumar A, Shutova MS, Tanaka K, Iwamoto DV, Calderwood DA, Svitkina TM, Schwartz MA. Filamin A mediates isotropic distribution of applied force across the actin network. Journal Of Cell Biology 2019, 218: 2481-2491. PMID: 31315944, PMCID: PMC6683746, DOI: 10.1083/jcb.201901086.
- Coarse-Grained Simulation of Full-Length Integrin ActivationBidone TC, Polley A, Jin J, Driscoll T, Iwamoto DV, Calderwood DA, Schwartz MA, Voth GA. Coarse-Grained Simulation of Full-Length Integrin Activation. Biophysical Journal 2019, 116: 1000-1010. PMID: 30851876, PMCID: PMC6428961, DOI: 10.1016/j.bpj.2019.02.011.
- Structural basis of the filamin A actin-binding domain interaction with F-actinIwamoto DV, Huehn A, Simon B, Huet-Calderwood C, Baldassarre M, Sindelar CV, Calderwood DA. Structural basis of the filamin A actin-binding domain interaction with F-actin. Nature Structural & Molecular Biology 2018, 25: 918-927. PMID: 30224736, PMCID: PMC6173970, DOI: 10.1038/s41594-018-0128-3.
- Filamin ABaldassarre M, Calderwood D. Filamin A. 2018, 1731-1737. DOI: 10.1007/978-3-319-67199-4_101630.
- Cell adhesion and the cytoskeletonCalderwood D. Cell adhesion and the cytoskeleton. Cryobiology 2018, 81: 221. DOI: 10.1016/j.cryobiol.2017.12.041.
- Kindlin-2 interacts with a highly conserved surface of ILK to regulate focal adhesion localization and cell spreadingKadry YA, Huet-Calderwood C, Simon B, Calderwood DA. Kindlin-2 interacts with a highly conserved surface of ILK to regulate focal adhesion localization and cell spreading. Journal Of Cell Science 2018, 131: jcs221184. PMID: 30254023, PMCID: PMC6215391, DOI: 10.1242/jcs.221184.
- Novel ecto-tagged integrins reveal their trafficking in live cellsHuet-Calderwood C, Rivera-Molina F, Iwamoto DV, Kromann EB, Toomre D, Calderwood DA. Novel ecto-tagged integrins reveal their trafficking in live cells. Nature Communications 2017, 8: 570. PMID: 28924207, PMCID: PMC5603536, DOI: 10.1038/s41467-017-00646-w.
- Nuclear Localization of Integrin Cytoplasmic Domain-associated Protein-1 (ICAP1) Influences β1 Integrin Activation and Recruits Krev/Interaction Trapped-1 (KRIT1) to the Nucleus*Draheim KM, Huet-Calderwood C, Simon B, Calderwood DA. Nuclear Localization of Integrin Cytoplasmic Domain-associated Protein-1 (ICAP1) Influences β1 Integrin Activation and Recruits Krev/Interaction Trapped-1 (KRIT1) to the Nucleus*. Journal Of Biological Chemistry 2016, 292: 1884-1898. PMID: 28003363, PMCID: PMC5290960, DOI: 10.1074/jbc.m116.762393.
- Filamin ABaldassarre M, Calderwood D. Filamin A. 2016, 1-7. DOI: 10.1007/978-1-4614-6438-9_101630-1.
- Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-β–dependent mechanismsShi X, Mihaylova VT, Kuruvilla L, Chen F, Viviano S, Baldassarre M, Sperandio D, Martinez R, Yue P, Bates JG, Breckenridge DG, Schlessinger J, Turk BE, Calderwood DA. Loss of TRIM33 causes resistance to BET bromodomain inhibitors through MYC- and TGF-β–dependent mechanisms. Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: e4558-e4566. PMID: 27432991, PMCID: PMC4978292, DOI: 10.1073/pnas.1608319113.
- The Rap1-RIAM pathway prefers β2 integrinsCalderwood DA. The Rap1-RIAM pathway prefers β2 integrins. Blood 2015, 126: 2658-2659. PMID: 26679542, PMCID: PMC4683328, DOI: 10.1182/blood-2015-09-668962.
- Regulation of integrin-mediated adhesionsIwamoto DV, Calderwood DA. Regulation of integrin-mediated adhesions. Current Opinion In Cell Biology 2015, 36: 41-47. PMID: 26189062, PMCID: PMC4639423, DOI: 10.1016/j.ceb.2015.06.009.
- CCM2–CCM3 interaction stabilizes their protein expression and permits endothelial network formationDraheim KM, Li X, Zhang R, Fisher OS, Villari G, Boggon TJ, Calderwood DA. CCM2–CCM3 interaction stabilizes their protein expression and permits endothelial network formation. Journal Of Cell Biology 2015, 208: 987-1001. PMID: 25825518, PMCID: PMC4384732, DOI: 10.1083/jcb.201407129.
- Direct Interactions with the Integrin β1 Cytoplasmic Tail Activate the Abl2/Arg Kinase*Simpson MA, Bradley WD, Harburger D, Parsons M, Calderwood DA, Koleske AJ. Direct Interactions with the Integrin β1 Cytoplasmic Tail Activate the Abl2/Arg Kinase*. Journal Of Biological Chemistry 2015, 290: 8360-8372. PMID: 25694433, PMCID: PMC4375489, DOI: 10.1074/jbc.m115.638874.
- Podocyte-associated talin1 is critical for glomerular filtration barrier maintenanceTian X, Kim J, Monkley S, Gotoh N, Nandez R, Soda K, Inoue K, Balkin D, Hassan H, Son S, Lee Y, Moeckel G, Calderwood D, Holzman L, Critchley D, Zent R, Reiser J, Ishibe S. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. Journal Of Clinical Investigation 2015, 125: 882-882. PMCID: PMC4319418, DOI: 10.1172/jci80814.
- PAK6 targets to cell–cell adhesions through its N-terminus in a Cdc42-dependent manner to drive epithelial colony escapeMorse EM, Sun X, Olberding JR, Ha BH, Boggon TJ, Calderwood DA. PAK6 targets to cell–cell adhesions through its N-terminus in a Cdc42-dependent manner to drive epithelial colony escape. Journal Of Cell Science 2015, 129: 380-393. PMID: 26598554, PMCID: PMC4732285, DOI: 10.1242/jcs.177493.
- The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and ClusteringEllis SJ, Lostchuck E, Goult BT, Bouaouina M, Fairchild MJ, López-Ceballos P, Calderwood DA, Tanentzapf G. The Talin Head Domain Reinforces Integrin-Mediated Adhesion by Promoting Adhesion Complex Stability and Clustering. PLOS Genetics 2014, 10: e1004756. PMID: 25393120, PMCID: PMC4230843, DOI: 10.1371/journal.pgen.1004756.
- Up-regulation of Thrombospondin-2 in Akt1-null Mice Contributes to Compromised Tissue Repair Due to Abnormalities in Fibroblast Function*Bancroft T, Bouaouina M, Roberts S, Lee M, Calderwood DA, Schwartz M, Simons M, Sessa WC, Kyriakides TR. Up-regulation of Thrombospondin-2 in Akt1-null Mice Contributes to Compromised Tissue Repair Due to Abnormalities in Fibroblast Function*. Journal Of Biological Chemistry 2014, 290: 409-422. PMID: 25389299, PMCID: PMC4281743, DOI: 10.1074/jbc.m114.618421.
- TRIM15 is a focal adhesion protein that regulates focal adhesion disassemblyUchil P, Pawliczek T, Reynolds T, Ding S, Hinz A, Munro J, Huang F, Floyd R, Yang H, Hamilton W, Bewersdorf J, Xiong Y, Calderwood D, Mothes W. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly. Development 2014, 141: e1906-e1906. DOI: 10.1242/dev.117242.
- Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesisLee M, Skoura A, Park E, Landskroner-Eiger S, Jozsef L, Luciano A, Murata T, Pasula S, Dong Y, Bouaouina M, Calderwood D, Ferguson S, De Camilli P, Sessa W. Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesis. Journal Of Cell Science 2014, 127: e1-e1. DOI: 10.1242/jcs.153080.
- Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesisLee MY, Skoura A, Park EJ, Landskroner-Eiger S, Jozsef L, Luciano AK, Murata T, Pasula S, Dong Y, Bouaouina M, Calderwood DA, Ferguson SM, De Camilli P, Sessa WC. Dynamin 2 regulation of integrin endocytosis, but not VEGF signaling, is crucial for developmental angiogenesis. Development 2014, 141: 1465-1472. PMID: 24598168, PMCID: PMC3957370, DOI: 10.1242/dev.104539.
- Podocyte-associated talin1 is critical for glomerular filtration barrier maintenanceTian X, Kim JJ, Monkley SM, Gotoh N, Nandez R, Soda K, Inoue K, Balkin DM, Hassan H, Son SH, Lee Y, Moeckel G, Calderwood DA, Holzman LB, Critchley DR, Zent R, Reiser J, Ishibe S. Podocyte-associated talin1 is critical for glomerular filtration barrier maintenance. Journal Of Clinical Investigation 2014, 124: 1098-1113. PMID: 24531545, PMCID: PMC3934159, DOI: 10.1172/jci69778.
- Integrin Cytoplasmic Tail InteractionsMorse EM, Brahme NN, Calderwood DA. Integrin Cytoplasmic Tail Interactions. Biochemistry 2014, 53: 810-820. PMID: 24467163, PMCID: PMC3985435, DOI: 10.1021/bi401596q.
- TRIM15 is a focal adhesion protein that regulates focal adhesion disassemblyUchil PD, Pawliczek T, Reynolds TD, Ding S, Hinz A, Munro JB, Huang F, Floyd RW, Yang H, Hamilton WL, Bewersdorf J, Xiong Y, Calderwood DA, Mothes W. TRIM15 is a focal adhesion protein that regulates focal adhesion disassembly. Journal Of Cell Science 2014, 127: 3928-3942. PMID: 25015296, PMCID: PMC4163643, DOI: 10.1242/jcs.143537.
- Cerebral cavernous malformation proteins at a glanceDraheim KM, Fisher OS, Boggon TJ, Calderwood DA. Cerebral cavernous malformation proteins at a glance. Journal Of Cell Science 2014, 127: 701-707. PMID: 24481819, PMCID: PMC3924200, DOI: 10.1242/jcs.138388.
- Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activationHuet-Calderwood C, Brahme NN, Kumar N, Stiegler AL, Raghavan S, Boggon TJ, Calderwood DA. Differences in binding to the ILK complex determines kindlin isoform adhesion localization and integrin activation. Journal Of Cell Science 2014, 127: 4308-4321. PMID: 25086068, PMCID: PMC4179494, DOI: 10.1242/jcs.155879.
- Substrate and Inhibitor Specificity of the Type II p21-Activated Kinase, PAK6Gao J, Ha BH, Lou HJ, Morse EM, Zhang R, Calderwood DA, Turk BE, Boggon TJ. Substrate and Inhibitor Specificity of the Type II p21-Activated Kinase, PAK6. PLOS ONE 2013, 8: e77818. PMID: 24204982, PMCID: PMC3810134, DOI: 10.1371/journal.pone.0077818.
- Kindlin Binds Migfilin Tandem LIM Domains and Regulates Migfilin Focal Adhesion Localization and Recruitment Dynamics*Brahme NN, Harburger DS, Kemp-O'Brien K, Stewart R, Raghavan S, Parsons M, Calderwood DA. Kindlin Binds Migfilin Tandem LIM Domains and Regulates Migfilin Focal Adhesion Localization and Recruitment Dynamics*. Journal Of Biological Chemistry 2013, 288: 35604-35616. PMID: 24165133, PMCID: PMC3853305, DOI: 10.1074/jbc.m113.483016.
- ASB2α, an E3 Ubiquitin Ligase Specificity Subunit, Regulates Cell Spreading and Triggers Proteasomal Degradation of Filamins by Targeting the Filamin Calponin Homology 1 Domain*Razinia Z, Baldassarre M, Cantelli G, Calderwood DA. ASB2α, an E3 Ubiquitin Ligase Specificity Subunit, Regulates Cell Spreading and Triggers Proteasomal Degradation of Filamins by Targeting the Filamin Calponin Homology 1 Domain*. Journal Of Biological Chemistry 2013, 288: 32093-32105. PMID: 24052262, PMCID: PMC3814802, DOI: 10.1074/jbc.m113.496604.
- Talins and kindlins: partners in integrin-mediated adhesionCalderwood DA, Campbell ID, Critchley DR. Talins and kindlins: partners in integrin-mediated adhesion. Nature Reviews Molecular Cell Biology 2013, 14: 503-517. PMID: 23860236, PMCID: PMC4116690, DOI: 10.1038/nrm3624.
- Purification and SAXS Analysis of the Integrin Linked Kinase, PINCH, Parvin (IPP) Heterotrimeric ComplexStiegler AL, Grant TD, Luft JR, Calderwood DA, Snell EH, Boggon TJ. Purification and SAXS Analysis of the Integrin Linked Kinase, PINCH, Parvin (IPP) Heterotrimeric Complex. PLOS ONE 2013, 8: e55591. PMID: 23383235, PMCID: PMC3561323, DOI: 10.1371/journal.pone.0055591.
- Mechanism for KRIT1 Release of ICAP1-Mediated Suppression of Integrin ActivationLiu W, Draheim KM, Zhang R, Calderwood DA, Boggon TJ. Mechanism for KRIT1 Release of ICAP1-Mediated Suppression of Integrin Activation. Molecular Cell 2013, 49: 719-729. PMID: 23317506, PMCID: PMC3684052, DOI: 10.1016/j.molcel.2012.12.005.
- Structural and Functional Characterization of the Kindlin-1 Pleckstrin Homology Domain*Yates LA, Lumb CN, Brahme NN, Zalyte R, Bird LE, De Colibus L, Owens RJ, Calderwood DA, Sansom MS, Gilbert RJ. Structural and Functional Characterization of the Kindlin-1 Pleckstrin Homology Domain*. Journal Of Biological Chemistry 2012, 287: 43246-43261. PMID: 23132860, PMCID: PMC3527912, DOI: 10.1074/jbc.m112.422089.
- Zasp regulates integrin activationBouaouina M, Jani K, Long JY, Czerniecki S, Morse EM, Ellis SJ, Tanentzapf G, Schöck F, Calderwood DA. Zasp regulates integrin activation. Journal Of Cell Science 2012, 125: 5647-5657. PMID: 22992465, PMCID: PMC3575701, DOI: 10.1242/jcs.103291.
- Cell Adhesion: A FERM Grasp of the Tail Sorts Out IntegrinsBrahme NN, Calderwood DA. Cell Adhesion: A FERM Grasp of the Tail Sorts Out Integrins. Current Biology 2012, 22: r692-r694. PMID: 22974999, PMCID: PMC5507346, DOI: 10.1016/j.cub.2012.07.049.
- Structural Basis for Paxillin Binding and Focal Adhesion Targeting of β-Parvin*Stiegler AL, Draheim KM, Li X, Chayen NE, Calderwood DA, Boggon TJ. Structural Basis for Paxillin Binding and Focal Adhesion Targeting of β-Parvin*. Journal Of Biological Chemistry 2012, 287: 32566-32577. PMID: 22869380, PMCID: PMC3463362, DOI: 10.1074/jbc.m112.367342.
- Structural Basis for Small G Protein Effector Interaction of Ras-related Protein 1 (Rap1) and Adaptor Protein Krev Interaction Trapped 1 (KRIT1)Li X, Zhang R, Draheim KM, Liu W, Calderwood DA, Boggon TJ. Structural Basis for Small G Protein Effector Interaction of Ras-related Protein 1 (Rap1) and Adaptor Protein Krev Interaction Trapped 1 (KRIT1). Journal Of Biological Chemistry 2012, 287: 22317-22327. PMID: 22577140, PMCID: PMC3381192, DOI: 10.1074/jbc.m112.361295.
- Filamins in Mechanosensing and SignalingRazinia Z, Mäkelä T, Ylänne J, Calderwood DA. Filamins in Mechanosensing and Signaling. Annual Review Of Biophysics 2012, 41: 227-246. PMID: 22404683, PMCID: PMC5508560, DOI: 10.1146/annurev-biophys-050511-102252.
- Macrophage Mesenchymal Migration Requires Podosome Stabilization by Filamin A*Guiet R, Vérollet C, Lamsoul I, Cougoule C, Poincloux R, Labrousse A, Calderwood DA, Glogauer M, Lutz PG, Maridonneau-Parini I. Macrophage Mesenchymal Migration Requires Podosome Stabilization by Filamin A*. Journal Of Biological Chemistry 2012, 287: 13051-13062. PMID: 22334688, PMCID: PMC3339984, DOI: 10.1074/jbc.m111.307124.
- FAK promotes recruitment of talin to nascent adhesions to control cell motilityLawson C, Lim S, Uryu S, Chen X, Calderwood D, Schlaepfer D. FAK promotes recruitment of talin to nascent adhesions to control cell motility. Journal Of Cell Biology 2012, 196: 387-387. PMCID: PMC3275381, DOI: 10.1083/jcb.2011080781963c.
- FAK promotes recruitment of talin to nascent adhesions to control cell motilityLawson C, Lim ST, Uryu S, Chen XL, Calderwood DA, Schlaepfer DD. FAK promotes recruitment of talin to nascent adhesions to control cell motility. Journal Of Cell Biology 2012, 196: 223-232. PMID: 22270917, PMCID: PMC3265949, DOI: 10.1083/jcb.201108078.
- A Conserved Lipid-binding Loop in the Kindlin FERM F1 Domain Is Required for Kindlin-mediated αIIbβ3 Integrin Coactivation*Bouaouina M, Goult BT, Huet-Calderwood C, Bate N, Brahme NN, Barsukov IL, Critchley DR, Calderwood DA. A Conserved Lipid-binding Loop in the Kindlin FERM F1 Domain Is Required for Kindlin-mediated αIIbβ3 Integrin Coactivation*. Journal Of Biological Chemistry 2012, 287: 6979-6990. PMID: 22235127, PMCID: PMC3293583, DOI: 10.1074/jbc.m111.330845.
- Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tensionCoyer SR, Singh A, Dumbauld DW, Calderwood DA, Craig SW, Delamarche E, García AJ. Nanopatterning reveals an ECM area threshold for focal adhesion assembly and force transmission that is regulated by integrin activation and cytoskeleton tension. Journal Of Cell Science 2012, 125: 5110-5123. PMID: 22899715, PMCID: PMC3533393, DOI: 10.1242/jcs.108035.
- Functional differences between kindlin-1 and kindlin-2 in keratinocytesBandyopadhyay A, Rothschild G, Kim S, Calderwood DA, Raghavan S. Functional differences between kindlin-1 and kindlin-2 in keratinocytes. Journal Of Cell Science 2012, 125: 2172-2184. PMID: 22328497, PMCID: PMC3367939, DOI: 10.1242/jcs.096214.
- Filamin A controls matrix metalloproteinase activity and regulates cell invasion in human fibrosarcoma cellsBaldassarre M, Razinia Z, Brahme NN, Buccione R, Calderwood DA. Filamin A controls matrix metalloproteinase activity and regulates cell invasion in human fibrosarcoma cells. Journal Of Cell Science 2012, 125: 3858-3869. PMID: 22595522, PMCID: PMC3462082, DOI: 10.1242/jcs.104018.
- The E3 ubiquitin ligase specificity subunit ASB2α targets filamins for proteasomal degradation by interacting with the filamin actin-binding domainRazinia Z, Baldassarre M, Bouaouina M, Lamsoul I, Lutz PG, Calderwood DA. The E3 ubiquitin ligase specificity subunit ASB2α targets filamins for proteasomal degradation by interacting with the filamin actin-binding domain. Journal Of Cell Science 2011, 124: 2631-2641. PMID: 21750192, PMCID: PMC3138704, DOI: 10.1242/jcs.084343.
- Functional and Structural Insights into ASB2α, a Novel Regulator of Integrin-dependent Adhesion of Hematopoietic Cells*Lamsoul I, Burande CF, Razinia Z, Houles TC, Menoret D, Baldassarre M, Erard M, Moog-Lutz C, Calderwood DA, Lutz PG. Functional and Structural Insights into ASB2α, a Novel Regulator of Integrin-dependent Adhesion of Hematopoietic Cells*. Journal Of Biological Chemistry 2011, 286: 30571-30581. PMID: 21737450, PMCID: PMC3162417, DOI: 10.1074/jbc.m111.220921.
- Talin and Signaling Through IntegrinsBouaouina M, Harburger DS, Calderwood DA. Talin and Signaling Through Integrins. 2011, 757: 325-347. PMID: 21909921, PMCID: PMC5642996, DOI: 10.1007/978-1-61779-166-6_20.
- KindlinsBouaouina M, Calderwood DA. Kindlins. Current Biology 2011, 21: r99-r101. PMID: 21300280, DOI: 10.1016/j.cub.2010.12.002.
- Structure of a double ubiquitin‐like domain in the talin head: a role in integrin activationGoult BT, Bouaouina M, Elliott PR, Bate N, Patel B, Gingras AR, Grossmann JG, Roberts GC, Calderwood DA, Critchley DR, Barsukov IL. Structure of a double ubiquitin‐like domain in the talin head: a role in integrin activation. The EMBO Journal 2010, 29: 1069-1080. PMID: 20150896, PMCID: PMC2845276, DOI: 10.1038/emboj.2010.4.
- Structural basis of competition between PINCH1 and PINCH2 for binding to the ankyrin repeat domain of integrin-linked kinaseChiswell BP, Stiegler AL, Razinia Z, Nalibotski E, Boggon TJ, Calderwood DA. Structural basis of competition between PINCH1 and PINCH2 for binding to the ankyrin repeat domain of integrin-linked kinase. Journal Of Structural Biology 2009, 170: 157-163. PMID: 19963065, PMCID: PMC2841223, DOI: 10.1016/j.jsb.2009.12.002.
- Filamins Regulate Cell Spreading and Initiation of Cell MigrationBaldassarre M, Razinia Z, Burande CF, Lamsoul I, Lutz PG, Calderwood DA. Filamins Regulate Cell Spreading and Initiation of Cell Migration. PLOS ONE 2009, 4: e7830. PMID: 19915675, PMCID: PMC2773003, DOI: 10.1371/journal.pone.0007830.
- The Structure of the N-Terminus of Kindlin-1: A Domain Important for αIIbβ3 Integrin ActivationGoult BT, Bouaouina M, Harburger DS, Bate N, Patel B, Anthis NJ, Campbell ID, Calderwood DA, Barsukov IL, Roberts GC, Critchley DR. The Structure of the N-Terminus of Kindlin-1: A Domain Important for αIIbβ3 Integrin Activation. Journal Of Molecular Biology 2009, 394: 944-956. PMID: 19804783, PMCID: PMC2963925, DOI: 10.1016/j.jmb.2009.09.061.
- Filamin A–β1 Integrin Complex Tunes Epithelial Cell Response to Matrix TensionGehler S, Baldassarre M, Lad Y, Leight JL, Wozniak MA, Riching KM, Eliceiri KW, Weaver VM, Calderwood DA, Keely PJ. Filamin A–β1 Integrin Complex Tunes Epithelial Cell Response to Matrix Tension. Molecular Biology Of The Cell 2009, 20: 3224-3238. PMID: 19458194, PMCID: PMC2710838, DOI: 10.1091/mbc.e08-12-1186.
- Integrin signalling at a glanceHarburger D, Calderwood D. Integrin signalling at a glance. Journal Of Cell Science 2009, 122: 1472-1472. PMCID: PMC2777994, DOI: 10.1242/jcs.052910.
- The E3 ubiquitin ligase specificity subunit ASB2β is a novel regulator of muscle differentiation that targets filamin B to proteasomal degradationBello NF, Lamsoul I, Heuzé ML, Métais A, Moreaux G, Calderwood DA, Duprez D, Moog-Lutz C, Lutz PG. The E3 ubiquitin ligase specificity subunit ASB2β is a novel regulator of muscle differentiation that targets filamin B to proteasomal degradation. Cell Death & Differentiation 2009, 16: 921-932. PMID: 19300455, PMCID: PMC2709956, DOI: 10.1038/cdd.2009.27.
- Kindlin-1 and -2 Directly Bind the C-terminal Region of β Integrin Cytoplasmic Tails and Exert Integrin-specific Activation Effects*Harburger DS, Bouaouina M, Calderwood DA. Kindlin-1 and -2 Directly Bind the C-terminal Region of β Integrin Cytoplasmic Tails and Exert Integrin-specific Activation Effects*. Journal Of Biological Chemistry 2009, 284: 11485-11497. PMID: 19240021, PMCID: PMC2670154, DOI: 10.1074/jbc.m809233200.
- The Role of FilGAP-Filamin A Interactions in MechanoprotectionShifrin Y, Arora PD, Ohta Y, Calderwood DA, McCulloch CA. The Role of FilGAP-Filamin A Interactions in Mechanoprotection. Molecular Biology Of The Cell 2009, 20: 1269-1279. PMID: 19144823, PMCID: PMC2649276, DOI: 10.1091/mbc.e08-08-0872.
- Integrin signalling at a glanceHarburger DS, Calderwood DA. Integrin signalling at a glance. Journal Of Cell Science 2008, 122: 159-163. PMID: 19118207, PMCID: PMC2714413, DOI: 10.1242/jcs.018093.
- The structural basis of integrin-linked kinase–PINCH interactionsChiswell BP, Zhang R, Murphy JW, Boggon TJ, Calderwood DA. The structural basis of integrin-linked kinase–PINCH interactions. Proceedings Of The National Academy Of Sciences Of The United States Of America 2008, 105: 20677-20682. PMID: 19074270, PMCID: PMC2634877, DOI: 10.1073/pnas.0811415106.
- JAM-L-mediated leukocyte adhesion to endothelial cells is regulated in cis by α4β1 integrin activationLuissint A, Lutz P, Calderwood D, Couraud P, Bourdoulous S. JAM-L-mediated leukocyte adhesion to endothelial cells is regulated in cis by α4β1 integrin activation. The Journal Of General Physiology 2008, 133: i1-i1. DOI: 10.1085/jgp1331oia1.
- JAM-L–mediated leukocyte adhesion to endothelial cells is regulated in cis by a4b1 integrin activationLuissint A, Lutz P, Calderwood D, Couraud P, Bourdoulous S. JAM-L–mediated leukocyte adhesion to endothelial cells is regulated in cis by a4b1 integrin activation. Journal Of Experimental Medicine 2008, 205: i29-i29. DOI: 10.1084/jem20513oia29.
- JAM-L–mediated leukocyte adhesion to endothelial cells is regulated in cis by α4β1 integrin activationLuissint AC, Lutz PG, Calderwood DA, Couraud PO, Bourdoulous S. JAM-L–mediated leukocyte adhesion to endothelial cells is regulated in cis by α4β1 integrin activation. Journal Of Cell Biology 2008, 183: 1159-1173. PMID: 19064666, PMCID: PMC2600739, DOI: 10.1083/jcb.200805061.
- Structural Basis of the Migfilin-Filamin Interaction and Competition with Integrin β Tails*Lad Y, Jiang P, Ruskamo S, Harburger DS, Ylänne J, Campbell ID, Calderwood DA. Structural Basis of the Migfilin-Filamin Interaction and Competition with Integrin β Tails*. Journal Of Biological Chemistry 2008, 283: 35154-35163. PMID: 18829455, PMCID: PMC2596399, DOI: 10.1074/jbc.m802592200.
- ASB2 targets filamins A and B to proteasomal degradationHeuzé ML, Lamsoul I, Baldassarre M, Lad Y, Lévêque S, Razinia Z, Moog-Lutz C, Calderwood DA, Lutz PG. ASB2 targets filamins A and B to proteasomal degradation. Blood 2008, 112: 5130-5140. PMID: 18799729, PMCID: PMC2597609, DOI: 10.1182/blood-2007-12-128744.
- The N-terminal Domains of Talin Cooperate with the Phosphotyrosine Binding-like Domain to Activate β1 and β3 Integrins*Bouaouina M, Lad Y, Calderwood DA. The N-terminal Domains of Talin Cooperate with the Phosphotyrosine Binding-like Domain to Activate β1 and β3 Integrins*. Journal Of Biological Chemistry 2007, 283: 6118-6125. PMID: 18165225, DOI: 10.1074/jbc.m709527200.
- Structure of three tandem filamin domains reveals auto‐inhibition of ligand bindingLad Y, Kiema T, Jiang P, Pentikäinen OT, Coles CH, Campbell ID, Calderwood DA, Ylänne J. Structure of three tandem filamin domains reveals auto‐inhibition of ligand binding. The EMBO Journal 2007, 26: 3993-4004. PMID: 17690686, PMCID: PMC1948075, DOI: 10.1038/sj.emboj.7601827.
- Forces and Bond Dynamics in Cell AdhesionEvans EA, Calderwood DA. Forces and Bond Dynamics in Cell Adhesion. Science 2007, 316: 1148-1153. PMID: 17525329, DOI: 10.1126/science.1137592.
- Integrin Cytoskeletal InteractionsLad Y, Harburger DS, Calderwood DA. Integrin Cytoskeletal Interactions. 2007, 426: 69-84. PMID: 17697880, DOI: 10.1016/s0076-6879(07)26004-5.
- Another factor cooperates with talin to activate β1 integrinsBouaouina M, Lad Y, Calderwood D. Another factor cooperates with talin to activate β1 integrins. Matrix Biology 2006, 25: s50. DOI: 10.1016/j.matbio.2006.08.139.
- Reconstructing and Deconstructing Agonist-Induced Activation of Integrin αIIbβ3Han J, Lim CJ, Watanabe N, Soriani A, Ratnikov B, Calderwood DA, Puzon-McLaughlin W, Lafuente EM, Boussiotis VA, Shattil SJ, Ginsberg MH. Reconstructing and Deconstructing Agonist-Induced Activation of Integrin αIIbβ3. Current Biology 2006, 16: 1796-1806. PMID: 16979556, DOI: 10.1016/j.cub.2006.08.035.
- Integrins in the OvaryMonniaux D, Huet-Calderwood C, Bellego F, Fabre S, Monget P, Calderwood D. Integrins in the Ovary. Seminars In Reproductive Medicine 2006, 24: 251-261. PMID: 16944422, DOI: 10.1055/s-2006-948554.
- The Molecular Basis of Filamin Binding to Integrins and Competition with TalinKiema T, Lad Y, Jiang P, Oxley CL, Baldassarre M, Wegener KL, Campbell ID, Ylänne J, Calderwood DA. The Molecular Basis of Filamin Binding to Integrins and Competition with Talin. Molecular Cell 2006, 21: 337-347. PMID: 16455489, DOI: 10.1016/j.molcel.2006.01.011.
- Talin controls integrin activationCalderwood DA. Talin controls integrin activation. Biochemical Society Transactions 2004, 32: 434-437. PMID: 15157154, DOI: 10.1042/bst0320434.
- Competition for Talin Results in Trans-dominant Inhibition of Integrin Activation*Calderwood DA, Tai V, Di Paolo G, De Camilli P, Ginsberg MH. Competition for Talin Results in Trans-dominant Inhibition of Integrin Activation*. Journal Of Biological Chemistry 2004, 279: 28889-28895. PMID: 15143061, DOI: 10.1074/jbc.m402161200.
- Integrin activationCalderwood DA. Integrin activation. Journal Of Cell Science 2004, 117: 657-666. PMID: 14754902, DOI: 10.1242/jcs.01014.
- The Kindler Syndrome Protein Is Regulated by Transforming Growth Factor-β and Involved in Integrin-mediated Adhesion*Kloeker S, Major MB, Calderwood DA, Ginsberg MH, Jones DA, Beckerle MC. The Kindler Syndrome Protein Is Regulated by Transforming Growth Factor-β and Involved in Integrin-mediated Adhesion*. Journal Of Biological Chemistry 2003, 279: 6824-6833. PMID: 14634021, DOI: 10.1074/jbc.m307978200.
- Talin Binding to Integrin ß Tails: A Final Common Step in Integrin ActivationTadokoro S, Shattil SJ, Eto K, Tai V, Liddington RC, de Pereda J, Ginsberg MH, Calderwood DA. Talin Binding to Integrin ß Tails: A Final Common Step in Integrin Activation. Science 2003, 302: 103-106. PMID: 14526080, DOI: 10.1126/science.1086652.
- Talin forges the links between integrins and actinCalderwood DA, Ginsberg MH. Talin forges the links between integrins and actin. Nature Cell Biology 2003, 5: 694-696. PMID: 12894175, DOI: 10.1038/ncb0803-694.
- Domain-Specific Interactions of Talin with the Membrane-Proximal Region of the Integrin β3 Subunit †Ulmer TS, Calderwood DA, Ginsberg MH, Campbell ID. Domain-Specific Interactions of Talin with the Membrane-Proximal Region of the Integrin β3 Subunit †. Biochemistry 2003, 42: 8307-8312. PMID: 12846579, DOI: 10.1021/bi034384s.
- Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signalingCalderwood DA, Fujioka Y, de Pereda JM, García-Alvarez B, Nakamoto T, Margolis B, McGlade CJ, Liddington RC, Ginsberg MH. Integrin β cytoplasmic domain interactions with phosphotyrosine-binding domains: A structural prototype for diversity in integrin signaling. Proceedings Of The National Academy Of Sciences Of The United States Of America 2003, 100: 2272-2277. PMID: 12606711, PMCID: PMC151330, DOI: 10.1073/pnas.262791999.
- Structural Determinants of Integrin Recognition by TalinGarcı́a-Alvarez B, de Pereda JM, Calderwood DA, Ulmer TS, Critchley D, Campbell ID, Ginsberg MH, Liddington RC. Structural Determinants of Integrin Recognition by Talin. Molecular Cell 2003, 11: 49-58. PMID: 12535520, DOI: 10.1016/s1097-2765(02)00823-7.
- The N-terminal SH2 Domains of Syk and ZAP-70 Mediate Phosphotyrosine-independent Binding to Integrin β Cytoplasmic Domains*Woodside DG, Obergfell A, Talapatra A, Calderwood DA, Shattil SJ, Ginsberg MH. The N-terminal SH2 Domains of Syk and ZAP-70 Mediate Phosphotyrosine-independent Binding to Integrin β Cytoplasmic Domains*. Journal Of Biological Chemistry 2002, 277: 39401-39408. PMID: 12171941, DOI: 10.1074/jbc.m207657200.
- The Phosphotyrosine Binding-like Domain of Talin Activates Integrins*Calderwood DA, Yan B, de Pereda JM, Alvarez B, Fujioka Y, Liddington RC, Ginsberg MH. The Phosphotyrosine Binding-like Domain of Talin Activates Integrins*. Journal Of Biological Chemistry 2002, 277: 21749-21758. PMID: 11932255, DOI: 10.1074/jbc.m111996200.
- Increased filamin binding to β-integrin cytoplasmic domains inhibits cell migrationCalderwood D, Huttenlocher A, Kiosses W, Rose D, Woodside D, Schwartz M, Ginsberg M. Increased filamin binding to β-integrin cytoplasmic domains inhibits cell migration. Nature Cell Biology 2001, 3: 1060-1068. PMID: 11781567, DOI: 10.1038/ncb1201-1060.
- PEA-15 Mediates Cytoplasmic Sequestration of ERK MAP KinaseFormstecher E, Ramos J, Fauquet M, Calderwood D, Hsieh J, Canton B, Nguyen X, Barnier J, Camonis J, Ginsberg M, Chneiweiss H. PEA-15 Mediates Cytoplasmic Sequestration of ERK MAP Kinase. Developmental Cell 2001, 1: 239-250. PMID: 11702783, DOI: 10.1016/s1534-5807(01)00035-1.
- Calpain Cleavage Promotes Talin Binding to the β3Integrin Cytoplasmic Domain*Yan B, Calderwood D, Yaspan B, Ginsberg M. Calpain Cleavage Promotes Talin Binding to the β3Integrin Cytoplasmic Domain*. Journal Of Biological Chemistry 2001, 276: 28164-28170. PMID: 11382782, DOI: 10.1074/jbc.m104161200.
- Distinct Domains of CD98hc Regulate Integrins and Amino Acid Transport*Fenczik C, Zent R, Dellos M, Calderwood D, Satriano J, Kelly C, Ginsberg M. Distinct Domains of CD98hc Regulate Integrins and Amino Acid Transport*. Journal Of Biological Chemistry 2000, 276: 8746-8752. PMID: 11121428, DOI: 10.1074/jbc.m011239200.
- Integrin cytoplasmic domain-binding proteinsLiu S, Calderwood D, Ginsberg M. Integrin cytoplasmic domain-binding proteins. Journal Of Cell Science 2000, 113: 3563-3571. PMID: 11017872, DOI: 10.1242/jcs.113.20.3563.
- Integrins and Actin Filaments: Reciprocal Regulation of Cell Adhesion and Signaling*Calderwood D, Shattil S, Ginsberg M. Integrins and Actin Filaments: Reciprocal Regulation of Cell Adhesion and Signaling*. Journal Of Biological Chemistry 2000, 275: 22607-22610. PMID: 10801899, DOI: 10.1074/jbc.r900037199.
- Class- and Splice Variant-specific Association of CD98 with Integrin β Cytoplasmic Domains*Zent R, Fenczik C, Calderwood D, Liu S, Dellos M, Ginsberg M. Class- and Splice Variant-specific Association of CD98 with Integrin β Cytoplasmic Domains*. Journal Of Biological Chemistry 2000, 275: 5059-5064. PMID: 10671548, DOI: 10.1074/jbc.275.7.5059.
- The Talin Head Domain Binds to Integrin β Subunit Cytoplasmic Tails and Regulates Integrin Activation*Calderwood D, Zent R, Grant R, Rees D, Hynes R, Ginsberg M. The Talin Head Domain Binds to Integrin β Subunit Cytoplasmic Tails and Regulates Integrin Activation*. Journal Of Biological Chemistry 1999, 274: 28071-28074. PMID: 10497155, DOI: 10.1074/jbc.274.40.28071.
- Molecular Characterisation of Integrin–Procollagen C‐Propeptide InteractionsDavies D, Tuckwell DS, Calderwood DA, Weston SA, Takigawa M, Humphries MJ. Molecular Characterisation of Integrin–Procollagen C‐Propeptide Interactions. The FEBS Journal 1997, 246: 274-282. PMID: 9208915, DOI: 10.1111/j.1432-1033.1997.t01-1-00274.x.
- The Integrin α1 A-domain Is a Ligand Binding Site for Collagens and Laminin*Calderwood D, Tuckwell D, Eble J, Kühn K, Humphries M. The Integrin α1 A-domain Is a Ligand Binding Site for Collagens and Laminin*. Journal Of Biological Chemistry 1997, 272: 12311-12317. PMID: 9139675, DOI: 10.1074/jbc.272.19.12311.
- Specificity of integrin l-domain-ligand bindingCALDERWOOD D, TUCKWELL D, HUMPHRIES M. Specificity of integrin l-domain-ligand binding. Biochemical Society Transactions 1995, 23: 504s-504s. PMID: 8654689, DOI: 10.1042/bst023504s.
- Integrin alpha 2 I-domain is a binding site for collagens.Tuckwell D, Calderwood D, Green L, Humphries M. Integrin alpha 2 I-domain is a binding site for collagens. Journal Of Cell Science 1995, 108 ( Pt 4): 1629-37. PMID: 7615681, DOI: 10.1242/jcs.108.4.1629.