Laura Niklason, PhD, MD
Research & Publications
Biography
News
Research Summary
Dr. Niklason is Professor of Anesthesia and Biomedical Engineering at Yale. She received her Bachelors degrees in Physics and Biophysics from the University of Illinois, and went on to the University of Chicago for her PhD in Biophysics in 1988. Dr. Niklason subsequently received her MD from the University of Michigan, where she did her internship. She then went on to the Massachusetts General Hospital for residency in Anesthesia, followed by fellowship training in Critical Care Medicine. During her time in Boston, Dr. Niklason was also a post-doctoral researcher at MIT with Dr. Robert Langer, where she developed techniques for the tissue engineering of autologous arteries. Dr. Niklason joined the faculty at Duke University in 1998, where she continued her work in cardiovascular tissue engineering, and founded a biotechnology company designed to bring tissue engineered cardiovascular products to the clinic. Dr. Niklason has received national and international recognition for her work in this field, receiving the Discover Magazine award for Technological Innovation in 2000. In January of 2006, Niklason moved to Yale University, where she is expanding her research program in tissue engineering of blood vessels and lung, as well as understanding the basic aspects of cellular aging.
Specialized Terms: Anesthesiology; Biomedical Engineering; Biophysics; Physics
Extensive Research Description
- Tissue engineered arteries, utilizing decellularization approaches
- Regeneration of whole, functional lung tissue
- Engineering of thoracic conduits, including trachea and esophagus
- Investigation of the molecular basis of cellular aging in various tissues
- Investigation of causes of intimal hyperplasia in vein grafts
Coauthors
Research Interests
Anesthesiology; Biomedical Engineering; Biophysics; Blood Vessels; Lung; Physics; Tissue Engineering
Selected Publications
- Targeted proteomics effectively quantifies differences between native lung and detergent-decellularized lung extracellular matricesCalle EA, Hill RC, Leiby KL, Le AV, Gard AL, Madri JA, Hansen KC, Niklason LE. Targeted proteomics effectively quantifies differences between native lung and detergent-decellularized lung extracellular matrices. Acta Biomaterialia 2016, 46: 91-100. PMID: 27693690, PMCID: PMC5451113, DOI: 10.1016/j.actbio.2016.09.043.
- Engineered Tissue–Stent Biocomposites as Tracheal ReplacementsZhao L, Sundaram S, Le AV, Huang AH, Zhang J, Hatachi G, Beloiartsev A, Caty MG, Yi T, Leiby K, Gard A, Kural MH, Gui L, Rocco KA, Sivarapatna A, Calle E, Greaney A, Urbani L, Maghsoudlou P, Burns A, DeCoppi P, Niklason LE. Engineered Tissue–Stent Biocomposites as Tracheal Replacements. Tissue Engineering Part A 2016, 22: 1086-1097. PMID: 27520928, PMCID: PMC5312617, DOI: 10.1089/ten.tea.2016.0132.
- Impaired von Willebrand factor adhesion and platelet response in thrombospondin-2 knockout mice.Kristofik N, Calabro NE, Tian W, Meng A, MacLauchlan S, Wang Y, Breuer CK, Tellides G, Niklason LE, Kyriakides TR. Impaired von Willebrand factor adhesion and platelet response in thrombospondin-2 knockout mice. Blood 2016, 128: 1642-50. PMID: 27471233, PMCID: PMC5034742, DOI: 10.1182/blood-2016-03-702845.
- New Functional Tools for Antithrombogenic Activity Assessment of Live Surface GlycocalyxDimitrievska S, Gui L, Weyers A, Lin T, Cai C, Wu W, Tuggle CT, Sundaram S, Balestrini JL, Slattery D, Tchouta L, Kyriakides TR, Tarbell JM, Linhardt RJ, Niklason LE. New Functional Tools for Antithrombogenic Activity Assessment of Live Surface Glycocalyx. Arteriosclerosis Thrombosis And Vascular Biology 2016, 36: 1847-1853. PMID: 27386939, PMCID: PMC5283952, DOI: 10.1161/atvbaha.116.308023.
- Comparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicineBalestrini JL, Gard AL, Gerhold KA, Wilcox EC, Liu A, Schwan J, Le AV, Baevova P, Dimitrievska S, Zhao L, Sundaram S, Sun H, Rittié L, Dyal R, Broekelmann TJ, Mecham RP, Schwartz MA, Niklason LE, White ES. Comparative biology of decellularized lung matrix: Implications of species mismatch in regenerative medicine. Biomaterials 2016, 102: 220-230. PMID: 27344365, PMCID: PMC4939101, DOI: 10.1016/j.biomaterials.2016.06.025.
- Implantable tissue-engineered blood vessels from human induced pluripotent stem cellsGui L, Dash BC, Luo J, Qin L, Zhao L, Yamamoto K, Hashimoto T, Wu H, Dardik A, Tellides G, Niklason LE, Qyang Y. Implantable tissue-engineered blood vessels from human induced pluripotent stem cells. Biomaterials 2016, 102: 120-129. PMID: 27336184, PMCID: PMC4939127, DOI: 10.1016/j.biomaterials.2016.06.010.
- Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered ArteriesHuang AH, Balestrini JL, Udelsman BV, Zhou KC, Zhao L, Ferruzzi J, Starcher BC, Levene MJ, Humphrey JD, Niklason LE. Biaxial Stretch Improves Elastic Fiber Maturation, Collagen Arrangement, and Mechanical Properties in Engineered Arteries. Tissue Engineering Part C Methods 2016, 22: 524-533. PMID: 27108525, PMCID: PMC4921901, DOI: 10.1089/ten.tec.2015.0309.
- Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trialsLawson JH, Glickman MH, Ilzecki M, Jakimowicz T, Jaroszynski A, Peden EK, Pilgrim AJ, Prichard HL, Guziewicz M, Przywara S, Szmidt J, Turek J, Witkiewicz W, Zapotoczny N, Zubilewicz T, Niklason LE. Bioengineered human acellular vessels for dialysis access in patients with end-stage renal disease: two phase 2 single-arm trials. The Lancet 2016, 387: 2026-2034. PMID: 27203778, PMCID: PMC4915925, DOI: 10.1016/s0140-6736(16)00557-2.
- Ventilation-Based Decellularization System of the LungTsuchiya T, Mendez J, Calle EA, Hatachi G, Doi R, Zhao L, Suematsu T, Nagayasu T, Niklason LE. Ventilation-Based Decellularization System of the Lung. BioResearch Open Access 2016, 5: 118-126. PMID: 27186445, PMCID: PMC4860652, DOI: 10.1089/biores.2016.0012.
- Biomimetic Culture Reactor for Whole-Lung EngineeringRaredon MS, Rocco KA, Gheorghe CP, Sivarapatna A, Ghaedi M, Balestrini JL, Raredon TL, Calle EA, Niklason LE. Biomimetic Culture Reactor for Whole-Lung Engineering. BioResearch Open Access 2016, 5: 72-83. PMID: 27088061, PMCID: PMC4827315, DOI: 10.1089/biores.2016.0006.
- Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing in vivoMendez JJ, Ghaedi M, Sivarapatna A, Dimitrievska S, Shao Z, Osuji CO, Steinbacher DM, Leffell DJ, Niklason LE. Mesenchymal stromal cells form vascular tubes when placed in fibrin sealant and accelerate wound healing in vivo. Biomaterials 2014, 40: 61-71. PMID: 25433608, PMCID: PMC4268422, DOI: 10.1016/j.biomaterials.2014.11.011.
- A Call to CraftRaredon MS, Niklason LE. A Call to Craft. Science Translational Medicine 2014, 6: 218fs1. PMID: 24401937, PMCID: PMC4122270, DOI: 10.1126/scitranslmed.3008229.
- Human iPS cell–derived alveolar epithelium repopulates lung extracellular matrixGhaedi M, Calle EA, Mendez JJ, Gard AL, Balestrini J, Booth A, Bove PF, Gui L, White ES, Niklason LE. Human iPS cell–derived alveolar epithelium repopulates lung extracellular matrix. Journal Of Clinical Investigation 2013, 123: 4950-4962. PMID: 24135142, PMCID: PMC3809786, DOI: 10.1172/jci68793.
- Microfluidic artificial “vessels” for dynamic mechanical stimulation of mesenchymal stem cellsZhou J, Niklason LE. Microfluidic artificial “vessels” for dynamic mechanical stimulation of mesenchymal stem cells. Integrative Biology 2012, 4: 1487-1497. PMID: 23114826, PMCID: PMC3628532, DOI: 10.1039/c2ib00171c.
- Decellularized tissue-engineered blood vessel as an arterial conduitQuint C, Kondo Y, Manson RJ, Lawson JH, Dardik A, Niklason LE. Decellularized tissue-engineered blood vessel as an arterial conduit. Proceedings Of The National Academy Of Sciences Of The United States Of America 2011, 108: 9214-9219. PMID: 21571635, PMCID: PMC3107282, DOI: 10.1073/pnas.1019506108.
- Readily Available Tissue-Engineered Vascular GraftsDahl SL, Kypson AP, Lawson JH, Blum JL, Strader JT, Li Y, Manson RJ, Tente WE, DiBernardo L, Hensley MT, Carter R, Williams TP, Prichard HL, Dey MS, Begelman KG, Niklason LE. Readily Available Tissue-Engineered Vascular Grafts. Science Translational Medicine 2011, 3: 68ra9. PMID: 21289273, DOI: 10.1126/scitranslmed.3001426.
- Tissue-Engineered Lungs for in Vivo ImplantationPetersen TH, Calle EA, Zhao L, Lee EJ, Gui L, Raredon MB, Gavrilov K, Yi T, Zhuang ZW, Breuer C, Herzog E, Niklason LE. Tissue-Engineered Lungs for in Vivo Implantation. Science 2010, 329: 538-541. PMID: 20576850, PMCID: PMC3640463, DOI: 10.1126/science.1189345.