Yongli Zhang, PhD, MS
Research & Publications
Biography
News
Locations
Research Summary
Forces hold everything together and determine the structures and dynamics of macromolecules. We have broad interests and fine skills in measuring the intra- and inter-molecular forces and the forces generated by molecular machines as a crucial step to understand their biological functions. Our primary tool is combined optical trapping and single-molecule fluorescence spectroscopy, which allows us to simultaneously manipulate and visualize single molecules in real time. As a result, dynamic structures of proteins inaccessible by other experimental methods are obtained. Our primary interest is folding dynamics of soluble and membrane proteins involved in fundamental biological processes and human diseases. In particular, we focus on SNARE proteins and their regulators essential for intracellular vesicular fusion and regulated exocytosis associated with release of neurotransmitters and insulin.
We have developed a unique single-molecule manipulation approach to characterize the folding intermediates, energy and kinetics of various SNARE complexes. We have helped to establish that SNARE proteins are truly molecular engines for membrane fusion and gained important insights into their regulatory mechanisms.
Specialized Terms: Single-molecule biophysics and biochemistry; Optical tweezers; SNAREs; SNARE assembly; Munc18-1; Sec1/Munc18 (SM) proteins; Munc13-1; Synaptotagmins; Extended synaptotagmins; Complexin; Membrane fusion; Neurotransmitter release; Lipid exchange; Protein folding
Extensive Research Description
We are focused on understanding the molecular mechanisms that underlie three important biological processes:
1. Regulated SNARE folding and assembly.
The membrane fusion machinery contains SNARE proteins, Sec1/Munc18 (SM) proteins, synaptotagmin, complexin, NSF, SNAP, and Munc13. Among these proteins, SNAREs are key players. They couple their dynamical assembly and disassembly to membrane fusion in a precisely controlled manner. Specifically, SNARE assembly generates force to draw two membranes into proximity and use their folding energy to lower the energy barrier of membrane fusion. SM proteins, synaptotagmin, and complexin regulate SNARE assembly and enable membrane fusion to occur at right time and location. After membrane fusion, NSF and SNAP disassemble the fully assembled SNARE complexes in an ATP-dependent manner, recycling SNAREs for next round of fusion. We plan to understand how the above mentioned proteins work together to control exocytosis and how malfunctions of the fusion machinery cause diseases.
Sudhof, T.C., and Rothman, J.E. (2009). Membrane fusion: Grappling with SNARE and SM proteins. Science 323, 474-477.
Y. Gao, S. Zorman, G. Gundersen, Z. Q. Xi, G. Sirinakis, J. E. Rothman*, Y. L. Zhang*, Single reconstituted neuronal SNARE complexes zipper in three distinct stages. Science 337: 1340-1343 (2012).
L. Ma, A. A. Rebane, G. Yang, Z. Xi, Y. Kang, Y. Gao, Y. L. Zhang, Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis. eLIFE 4, e09580 (2015).
S. Zorman, A. A. Rebane, L. Ma, G. Yang, M. A. Molski, J. Coleman, F. Pincet, J. E. Rothman*, Y. L. Zhang*, Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins. eLIFE 3, e03348 (2014).
Y. L. Zhang, Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers, Protein Sci. 26, 1252-1265 (2017).
A. A. Rebane, B. Wang, L. Ma, H. Qu, J. Coleman, S. S. Krishnakumar, J. E. Rothman*, Y. L. Zhang*, Two disease-causing SNAP-25B mutations selectively impair SNARE C-terminal assembly. J. Mol. Biol. 430, 479 (2018).
J. Jiao, M. He, S. A. Port, R. W. Baker, Y. Xu, H. Qu, Y. Xiong, Y. Wang, H. Jin, T. J. Eisemann, F. M. Hughson*, Y. L. Zhang*, Munc18-1 catalyzes neuronal SNARE assembly by templating SNARE association. Elife 7, e41771 (2018).
* Co-corresponding authors.
2. Membrane protein folding, stability, and protein-membrane interactions.
Optical tweezers have been widely applied to study folding dynamics of soluble proteins, but not membrane proteins so far. We have been developing novel approaches to measure the folding energy and kinetics of membrane proteins using high-resolution optical tweezers. We are also interested in proteins that help membrane proteins get in and out membranes.
L. Ma, Y. Cai, Y. Li, J. Jiao, Z. Wu, B. O'Shaughnessy, P. De Camilli*, E. Karatekin*, Y. L. Zhang*, Single-molecule force spectroscopy of protein-membrane interactions. Elife 6, e30493 (2017)
3. Development of new single-molecule methods.
We have been developing new instruments or upgrading our machines by combining high-resolution optical tweezers, single-molecule fluorescence detection, and microfluidics to better study single proteins or protein complexes. We have been also developing new methods or algorithms to analyze data from single molecule experiments.
G. Sirinakis, Y. X. Ren, Y. Gao, Z. Q. Xi, Y. L. Zhang, Combined and versatile high-resolution optical tweezers and single-molecule fluorescence microscopy. Rev Sci Instrum. 83: 093708-(1-9) (2012).
Y. L. Zhang, J. Jiao, A. A. Rebane, Hidden Markov modeling with detailed balance and its application to single protein folding Biophys J 111, 2110 (2016).
A. A. Rebane, L. Ma, Y. L. Zhang, Structure-based derivation of protein folding intermediates and energies from optical tweezers. Biophys J 110, 441 (2016).
4. Molecular mechanism of the mechanosensitive ion channel NOMPC.
NOMPC is involved in mechanosensation of touch and hearing in flies. Unlike many mechanosensitive ion channels that sense membrane tension or force in the membrane, NOMPC has been proposed to sense force out of the membrane through a gating spring. In collaboration with groups of Yifan Cheng and Yuh-Nung Jan in UCSF, we have been investigating whether and how force modulates the ion conductance of NOMPC, using optical tweezers and fluorescence imaging.
- P. Jin, D. Bulkley, Y. M. Guo, W. Zhang, Z. H. Guo, W. Huynh, S. P. Wu, S. Meltzer, T. Cheng, L. Y. Jan, Y. N. Jan, Y. F. Cheng, Electron cryo-microscopy structure of the mechanotransduction channel NOMPC. Nature 547, 118 (2017).
- W. Zhang, L. E. Cheng, M. Kittelmann, J. F. Li, M. Petkovic, T. Cheng, P. Jin, Z. H. Guo, M. C. Gopfert, L. Y. Jan, Y. N. Jan, Ankyrin repeats convey force to gate the NOMPC mechanotransduction channel. Cell 162, 1391 (2015).
Coauthors
Research Interests
Exocytosis; Membrane Fusion; Synaptic Transmission; Protein Folding; Chromatin Assembly and Disassembly; SNARE Proteins; Synaptotagmins; Munc18 Proteins; Optical Tweezers
Public Health Interests
Nutrition
Research Image
Optical tweezers lab
Selected Publications
- A dynamic template complex mediates Munc18-chaperoned SNARE assemblyYang J, Jin H, Liu Y, Guo Y, Zhang Y. A dynamic template complex mediates Munc18-chaperoned SNARE assembly Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2215124119. PMID: 36454760, PMCID: PMC9894263, DOI: 10.1073/pnas.2215124119.
- Polybasic patches in both C2 domains of synaptotagmin-1 are required for evoked neurotransmitter releaseWu Z, Tsemperouli M, Ma L, Courtney N, Zhu J, Zhang Y, Chapman E, Karatekin E. Polybasic patches in both C2 domains of synaptotagmin-1 are required for evoked neurotransmitter release Biophysical Journal 2022, 121: 293a. DOI: 10.1016/j.bpj.2021.11.1283.
- Synaptic vesicle fusion: today and beyondBrose N, Brunger A, Cafiso D, Chapman ER, Diao J, Hughson FM, Jackson MB, Jahn R, Lindau M, Ma C, Rizo J, Shin YK, Söllner TH, Tamm L, Yoon TY, Zhang Y. Synaptic vesicle fusion: today and beyond Nature Structural & Molecular Biology 2019, 26: 663-668. PMID: 31384060, DOI: 10.1038/s41594-019-0277-z.
- Munc18-1 catalyzes neuronal SNARE assembly by templating SNARE associationJiao J, He M, Port SA, Baker RW, Xu Y, Qu H, Xiong Y, Wang Y, Jin H, Eisemann TJ, Hughson FM, Zhang Y. Munc18-1 catalyzes neuronal SNARE assembly by templating SNARE association ELife 2018, 7: e41771. PMID: 30540253, PMCID: PMC6320071, DOI: 10.7554/elife.41771.
- Single-Molecule Optical Tweezers Study of Regulated SNARE AssemblyMa L, Jiao J, Zhang Y. Single-Molecule Optical Tweezers Study of Regulated SNARE Assembly 2018, 1860: 95-114. PMID: 30317500, PMCID: PMC6441361, DOI: 10.1007/978-1-4939-8760-3_6.
- Editorial Overview: Single-Molecule Approaches up to Difficult Challenges in Folding and DynamicsZhang Y, Ha T, Marqusee S. Editorial Overview: Single-Molecule Approaches up to Difficult Challenges in Folding and Dynamics Journal Of Molecular Biology 2017, 430: 405-408. PMID: 29288633, PMCID: PMC5858691, DOI: 10.1016/j.jmb.2017.12.019.
- Single-molecule force spectroscopy of protein-membrane interactionsMa L, Cai Y, Li Y, Jiao J, Wu Z, O'Shaughnessy B, De Camilli P, Karatekin E, Zhang Y. Single-molecule force spectroscopy of protein-membrane interactions ELife 2017, 6: e30493. PMID: 29083305, PMCID: PMC5690283, DOI: 10.7554/elife.30493.
- Two Disease-Causing SNAP-25B Mutations Selectively Impair SNARE C-terminal AssemblyRebane AA, Wang B, Ma L, Qu H, Coleman J, Krishnakumar S, Rothman JE, Zhang Y. Two Disease-Causing SNAP-25B Mutations Selectively Impair SNARE C-terminal Assembly Journal Of Molecular Biology 2017, 430: 479-490. PMID: 29056461, PMCID: PMC5805579, DOI: 10.1016/j.jmb.2017.10.012.
- Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezersZhang Y. Energetics, kinetics, and pathway of SNARE folding and assembly revealed by optical tweezers Protein Science 2017, 26: 1252-1265. PMID: 28097727, PMCID: PMC5477538, DOI: 10.1002/pro.3116.
- Stability, folding dynamics, and long-range conformational transition of the synaptic t-SNARE complexZhang X, Rebane AA, Ma L, Li F, Jiao J, Qu H, Pincet F, Rothman JE, Zhang Y. Stability, folding dynamics, and long-range conformational transition of the synaptic t-SNARE complex Proceedings Of The National Academy Of Sciences Of The United States Of America 2016, 113: e8031-e8040. PMID: 27911771, PMCID: PMC5167175, DOI: 10.1073/pnas.1605748113.
- Single-Molecule Protein Folding Experiments Using High-Precision Optical TweezersJiao J, Rebane AA, Ma L, Zhang Y. Single-Molecule Protein Folding Experiments Using High-Precision Optical Tweezers 2016, 1486: 357-390. PMID: 27844436, PMCID: PMC5508109, DOI: 10.1007/978-1-4939-6421-5_14.
- Hidden Markov Modeling with Detailed Balance and Its Application to Single Protein FoldingZhang Y, Jiao J, Rebane AA. Hidden Markov Modeling with Detailed Balance and Its Application to Single Protein Folding Biophysical Journal 2016, 111: 2110-2124. PMID: 27851936, PMCID: PMC5112951, DOI: 10.1016/j.bpj.2016.09.045.
- Regulation of DNA Translocation Efficiency within the Chromatin Remodeler RSC/Sth1 Potentiates Nucleosome Sliding and EjectionClapier CR, Kasten MM, Parnell TJ, Viswanathan R, Szerlong H, Sirinakis G, Zhang Y, Cairns BR. Regulation of DNA Translocation Efficiency within the Chromatin Remodeler RSC/Sth1 Potentiates Nucleosome Sliding and Ejection Molecular Cell 2016, 62: 453-461. PMID: 27153540, PMCID: PMC5291166, DOI: 10.1016/j.molcel.2016.03.032.
- α-SNAP Enhances SNARE Zippering by Stabilizing the SNARE Four-Helix BundleMa L, Kang Y, Jiao J, Rebane AA, Cha HK, Xi Z, Qu H, Zhang Y. α-SNAP Enhances SNARE Zippering by Stabilizing the SNARE Four-Helix Bundle Cell Reports 2016, 15: 531-539. PMID: 27068468, PMCID: PMC4838522, DOI: 10.1016/j.celrep.2016.03.050.
- Alpha-SNAP enhances SNARE zippering by stabilizing the SNARE four-helix bundleL. Ma, Y. Kang, J. Y. Jiao, A. A. Rebane, H. K. Cha, Z. Xi, H. Qu, Y. L. Zhang, Alpha-SNAP enhances SNARE zippering by stabilizing the SNARE four-helix bundle. Cell Reports 15: 531-539 (2016).
- Structure-Based Derivation of Protein Folding Intermediates and Energies from Optical TweezersRebane AA, Ma L, Zhang Y. Structure-Based Derivation of Protein Folding Intermediates and Energies from Optical Tweezers Biophysical Journal 2016, 110: 441-454. PMID: 26789767, PMCID: PMC4724646, DOI: 10.1016/j.bpj.2015.12.003.
- Quantifying and Optimizing Single-Molecule Switching Nanoscopy at High SpeedsLin Y, Long JJ, Huang F, Duim WC, Kirschbaum S, Zhang Y, Schroeder LK, Rebane AA, Velasco MG, Virrueta A, Moonan DW, Jiao J, Hernandez SY, Zhang Y, Bewersdorf J. Quantifying and Optimizing Single-Molecule Switching Nanoscopy at High Speeds PLOS ONE 2015, 10: e0128135. PMID: 26011109, PMCID: PMC4444241, DOI: 10.1371/journal.pone.0128135.
- Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibitionJiao J, Rebane AA, Ma L, Gao Y, Zhang Y. Kinetically coupled folding of a single HIV-1 glycoprotein 41 complex in viral membrane fusion and inhibition Proceedings Of The National Academy Of Sciences Of The United States Of America 2015, 112: e2855-e2864. PMID: 26038562, PMCID: PMC4460471, DOI: 10.1073/pnas.1424995112.
- Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosisMa L, Rebane AA, Yang G, Xi Z, Kang Y, Gao Y, Zhang Y. Munc18-1-regulated stage-wise SNARE assembly underlying synaptic exocytosis ELife 2015, 4: e09580. PMID: 26701912, PMCID: PMC4744192, DOI: 10.7554/elife.09580.
- Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteinsZorman S, Rebane AA, Ma L, Yang G, Molski MA, Coleman J, Pincet F, Rothman JE, Zhang Y. Common intermediates and kinetics, but different energetics, in the assembly of SNARE proteins ELife 2014, 3: e03348. PMID: 25180101, PMCID: PMC4166003, DOI: 10.7554/elife.03348.
- High-resolution optical tweezers for single-molecule manipulation.Zhang X, Ma L, Zhang Y. High-resolution optical tweezers for single-molecule manipulation. The Yale Journal Of Biology And Medicine 2013, 86: 367-83. PMID: 24058311, PMCID: PMC3767221.
- Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopySirinakis G, Ren Y, Gao Y, Xi Z, Zhang Y. Combined versatile high-resolution optical tweezers and single-molecule fluorescence microscopy Review Of Scientific Instruments 2012, 83: 093708. PMID: 23020384, PMCID: PMC3465359, DOI: 10.1063/1.4752190.
- Single Reconstituted Neuronal SNARE Complexes Zipper in Three Distinct StagesGao Y, Zorman S, Gundersen G, Xi Z, Ma L, Sirinakis G, Rothman JE, Zhang Y. Single Reconstituted Neuronal SNARE Complexes Zipper in Three Distinct Stages Science 2012, 337: 1340-1343. PMID: 22903523, PMCID: PMC3677750, DOI: 10.1126/science.1224492.
- Single-molecule observation of helix staggering, sliding, and coiled coil misfoldingXi Z, Gao Y, Sirinakis G, Guo H, Zhang Y. Single-molecule observation of helix staggering, sliding, and coiled coil misfolding Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 5711-5716. PMID: 22451899, PMCID: PMC3326506, DOI: 10.1073/pnas.1116784109.
- Chapter One DNA Translocation of ATP-Dependent Chromatin Remodeling Factors Revealed by High-Resolution Optical TweezersZhang Y, Sirinakis G, Gundersen G, Xi Z, Gao Y. Chapter One DNA Translocation of ATP-Dependent Chromatin Remodeling Factors Revealed by High-Resolution Optical Tweezers 2012, 513: 3-28. PMID: 22929763, DOI: 10.1016/b978-0-12-391938-0.00001-x.
- Highly Anisotropic Stability and Folding Kinetics of a Single Coiled Coil Protein under Mechanical TensionGao Y, Sirinakis G, Zhang Y. Highly Anisotropic Stability and Folding Kinetics of a Single Coiled Coil Protein under Mechanical Tension Journal Of The American Chemical Society 2011, 133: 12749-12757. PMID: 21707065, PMCID: PMC3670761, DOI: 10.1021/ja204005r.
- The RSC chromatin remodelling ATPase translocates DNA with high force and small step sizeSirinakis G, Clapier CR, Gao Y, Viswanathan R, Cairns BR, Zhang Y. The RSC chromatin remodelling ATPase translocates DNA with high force and small step size The EMBO Journal 2011, 30: 2364-2372. PMID: 21552204, PMCID: PMC3116276, DOI: 10.1038/emboj.2011.141.
- Anomalous DNA binding by E2 regulatory protein driven by spacer sequence TATAXi Z, Zhang Y, Hegde RS, Shakked Z, Crothers DM. Anomalous DNA binding by E2 regulatory protein driven by spacer sequence TATA Nucleic Acids Research 2010, 38: 3827-3833. PMID: 20185566, PMCID: PMC2887970, DOI: 10.1093/nar/gkq114.
- Closing the Loop on Protein-DNA Interactions: Interplay Between Shape and Flexibility in Nucleoprotein Assemblies Having Implications for Biological RegulationLevene S, Zhang Y. Closing the Loop on Protein-DNA Interactions: Interplay Between Shape and Flexibility in Nucleoprotein Assemblies Having Implications for Biological Regulation 2009, 150: 195-212. DOI: 10.1007/978-1-4419-0670-0_10.
- Analysis of In-Vivo LacR-Mediated Gene Repression Based on the Mechanics of DNA LoopingZhang Y, McEwen AE, Crothers DM, Levene SD. Analysis of In-Vivo LacR-Mediated Gene Repression Based on the Mechanics of DNA Looping PLOS ONE 2006, 1: e136. PMID: 17205140, PMCID: PMC1762422, DOI: 10.1371/journal.pone.0000136.
- Statistical-Mechanical Theory of DNA LoopingZhang Y, McEwen AE, Crothers DM, Levene SD. Statistical-Mechanical Theory of DNA Looping Biophysical Journal 2005, 90: 1903-1912. PMID: 16361335, PMCID: PMC1386771, DOI: 10.1529/biophysj.105.070490.
- Predicting indirect readout effects in protein–DNA interactionsZhang Y, Xi Z, Hegde RS, Shakked Z, Crothers DM. Predicting indirect readout effects in protein–DNA interactions Proceedings Of The National Academy Of Sciences Of The United States Of America 2004, 101: 8337-8341. PMID: 15148366, PMCID: PMC420395, DOI: 10.1073/pnas.0402319101.
- High-throughput approach for detection of DNA bending and flexibility based on cyclizationZhang Y, Crothers DM. High-throughput approach for detection of DNA bending and flexibility based on cyclization Proceedings Of The National Academy Of Sciences Of The United States Of America 2003, 100: 3161-3166. PMID: 12629220, PMCID: PMC152263, DOI: 10.1073/pnas.0530189100.
- Statistical Mechanics of Sequence-Dependent Circular DNA and Its Application For DNA CyclizationZhang Y, Crothers DM. Statistical Mechanics of Sequence-Dependent Circular DNA and Its Application For DNA Cyclization Biophysical Journal 2003, 84: 136-153. PMID: 12524271, PMCID: PMC1302599, DOI: 10.1016/s0006-3495(03)74838-3.