Skip to Main Content

INFORMATION FOR

Gary Brudvig

Benjamin Silliman Professor of Chemistry

Contact Information

Gary Brudvig

Research Summary

Photosystem II is the chloroplast membrane protein complex that catalyzes the light-induced oxidation of water to dioxygen in the first step of photosynthetic electron transport. We use spectroscopic, biophysical, and molecular biological methods to probe the structure and function of the redox centers, the kinetics and yields of electron-transfer reactions, and the chemistry of water oxidation in photosystem II. Our goal is to define how Nature has solved the difficult problem of efficient light-driven, four-electron oxidation of water to dioxygen. The studies on photosystem II provide insight into the design of artificial systems that split water. In conjunction with our biophysical studies of the natural photosynthetic system, we are also investigating inorganic models of the tetramanganese active site in photosystem II. The synergism between the inorganic and biological chemistry is an important aspect of this research and yielded the first inorganic manganese water-oxidation catalyst. We are also working to develop artificial processes that use solar energy for fuel production. Our aim is to use a bioinspired approach for solar fuel production based on our water-oxidation catalysts attached to nanostructured TiO2.

Specialized Terms: photosystem II; EPR spectroscopy; metalloproteins; artificial photosynthesis

Extensive Research Description

What is the molecular basis for energy transduction in plant photosynthesis? This is the question that has been the focus of our research program. The first step in the energy-transduction process is the light-induced charge-separation reaction that occurs in a membrane-protein complex called the photoreaction center. Thereafter, a series of rapid electron-transfer reactions serve to stabilize the charge-separated state. Later still, the photochemically-produced oxidant and reductant are consumed in the oxidation of water and the reduction of carbon dioxide. One of the primary targets of our research is the plant enzyme called photosystem II that catalyzes the oxidation of water to dioxygen at a site within the enzyme containing a tetranuclear manganese cluster. Photosystem II is one of two reaction center complexes that initiate the light-driven electron transfer reactions of plant photosynthesis. The long-term objective of our research is to develop an understanding at the molecular level of the conversion of light energy into chemical energy in plant photosynthesis. Toward this goal, we are pursuing several related lines of research. A major effort involves biophysical studies of the purified photosystem II complex itself. We use spectroscopic and biophysical methods to probe the structure of the redox centers, the kinetics and yields of electron-transfer reactions, and the chemistry of water oxidation in photosystem II. Our aim is to define how Nature has solved the difficult problem of the efficient light-driven, four-electron oxidation of water to O2. It is hoped that these studies will provide insight into the design of artificial systems that split water. Toward this goal, we are also investigating inorganic models of the manganese site in photosystem II. Because the model complexes are more easily characterized, the inorganic studies provide important information that can aid the interpretation of results from the biological system. On the other hand, the information from the biophysical studies better define the nature of the catalytic manganese complex that is to be modeled. The synergism between the inorganic and biological chemistry is an important aspect of this research. A third area of research is artificial photosynthesis. We are working to develop artificial processes that use solar energy for fuel production in collaboration with Professors Batista, Crabtree and Schmuttenmaer. Our aim is to use a bioinspired approach for solar fuel production based on our water-oxidation catalysts attached to nanostructured TiO2.

Biophysical Studies of Photosystem II
We use EPR, optical, and Raman spectroscopy, turnover measurements of oxygen evolution and site-directed mutagenesis to monitor the photochemical events and to obtain structural and mechanistic information on photosystem II. Photosystem II contains more than ten distinct redox-active centers. One of these is the tetranuclear manganese cluster that, together with a redox-active tyrosine (Yz), catalyzes the oxidation of water. We study photosystem II samples that are prepared and trapped at low temperature in each of the oxidation states ("S-states") of the manganese complex. The binding and reactions of substrates and inhibitors are also studied in order to define the structure and chemical properties of the manganese cluster as it proceeds through the catalytic cycle. For example, acetate competes with chloride for binding to the manganese cluster. Illumination of PSII treated with acetate inhibits the enzyme in a state in which a paramagnetic S-state (S2) of the manganese cluster interacts with oxidized Yz. We have investigated this interaction using EPR and used the spectroscopic results in conjunction with spectral simulations and molecular modeling to devise a proposed structure for the manganese cluster and its associated cofactors (calcium, chloride, and Yz). In order to control the turnover of photosystem II in the highly concentrated samples needed for spectroscopic studies, we have used herbicides that bind to photosystem II and block electron transfer. One recent extension of this approach involves tethering a redox-active center to the herbicide so that multi-electron turnover control can be achieved. Other projects involve the use of optical or fluorescence spectroscopy to study the electron-transfer reactions that occur during the water oxidation cycle. We have also used Raman spectroscopy to characterize the oxidized forms of some of the electron-transfer cofactors, such as chlorophyll and carotenoid cation radicals, and also the manganese complex itself. Photosystem II contains several redox centers, including cytochrome b559, that do not play a direct role in the reactions leading to water oxidation. The function of these species is currently not well understood, but they may be involved in protection of photosystem II from photodamage. By using a combination of spectroscopic measurements, functional assays and site-directed mutagenesis, we are working to reveal how these alternate electron donors function.

Inorganic Models of the Manganese Cluster in Photosystem II
The S states in the water oxidation cycle are different oxidation states of the tetranuclear manganese cluster. The chemistry of this manganese cluster involves high-valent manganese and H2O. The goal of inorganic modeling studies is to give an insight into the high-valent Mn chemistry in aqueous media that may be relevant to the photoactivated assembly of the tetranuclear manganese cluster, its structure and physical properties, and the mechanism of water oxidation. We have synthesized the first di-mu-oxo Mn-complex capable of catalytically forming O2 from O-atom transfer reagents such as oxone (HSO5-). EPR, low-temperature optical and Raman spectroscopy, magnetics and electrochemistry are some of the methods that we use to characterize the manganese complexes.

Coauthors

Research Interests

Electron Spin Resonance Spectroscopy; Metalloproteins; Molecular Biology; Photosynthesis

Selected Publications

  • Redox leveling of the Kok cycle of photosystem II established by water ligand binding to the oxygen evolving complexLiu J, Yang K, Brudvig G, Batista V. Redox leveling of the Kok cycle of photosystem II established by water ligand binding to the oxygen evolving complex Biophysical Journal 2023, 122: 199a-200a. DOI: 10.1016/j.bpj.2022.11.1210.
  • Revealing the Structure of Single Cobalt Sites in Carbon Nitride for Photocatalytic CO2 ReductionHuang P, Huang J, Li J, Pham T, Zhang L, He J, Brudvig G, Deskins N, Frenkel A, Li G. Revealing the Structure of Single Cobalt Sites in Carbon Nitride for Photocatalytic CO2 Reduction The Journal Of Physical Chemistry C 2022, 126: 8596-8604. DOI: 10.1021/acs.jpcc.2c01216.
  • Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2 @TiO2 with sulfur/oxygen dual-defectWu Y, Chen X, Cao J, Zhu Y, Yuan W, Hu Z, Ao Z, Brudvig G, Tian F, Yu J, Li C. Photocatalytically recovering hydrogen energy from wastewater treatment using MoS2 @TiO2 with sulfur/oxygen dual-defect Applied Catalysis B Environmental 2022, 303: 120878. DOI: 10.1016/j.apcatb.2021.120878.
  • THz-Photoconductivity and THz-Conductivity in Metal-Organic Frameworks (MOFs)Neu J, Ostresh S, Pattengale B, Brudvig G. THz-Photoconductivity and THz-Conductivity in Metal-Organic Frameworks (MOFs) 2022, 00: 1-4. DOI: 10.1109/irmmw-thz50927.2022.9895557.
  • Toward understanding the S2-S3 transition in the Kok Cycle of Photosystem II: Lessons from Sr-Substituted StructureAmin M, Kaur D, Gunner M, Brudvig G. Toward understanding the S2-S3 transition in the Kok Cycle of Photosystem II: Lessons from Sr-Substituted Structure Inorganic Chemistry Communications 2021, 133: 108890. DOI: 10.1016/j.inoche.2021.108890.
  • Organometallic complexes as preferred precursors to form molecular Ir(pyalk) coordination complexes for catalysis of oxygen evolutionHu G, Crabtree R, Brudvig G. Organometallic complexes as preferred precursors to form molecular Ir(pyalk) coordination complexes for catalysis of oxygen evolution Inorganica Chimica Acta 2021, 526: 120507. DOI: 10.1016/j.ica.2021.120507.
  • Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalystsLang C, Li J, Yang K, Wang Y, He D, Thorne J, Croslow S, Dong Q, Zhao Y, Prostko G, Brudvig G, Batista V, Waegele M, Wang D. Observation of a potential-dependent switch of water-oxidation mechanism on Co-oxide-based catalysts Chem 2021, 7: 2101-2117. DOI: 10.1016/j.chempr.2021.03.015.
  • Forging O–O BondsCody C, Brudvig G. Forging O–O Bonds Joule 2021, 5: 1923-1925. DOI: 10.1016/j.joule.2021.07.013.
  • Experimental Verification of Ir 5d Orbital States and Atomic Structures in Highly Active Amorphous Iridium Oxide CatalystsKwon G, Chang S, Heo J, Lee K, Kim J, Cho B, Koo T, Kim B, Kim C, Lee J, Bak S, Beyer K, Zhong H, Koch R, Hwang S, Utschig L, Huang X, Hu G, Brudvig G, Tiede D, Kim J. Experimental Verification of Ir 5d Orbital States and Atomic Structures in Highly Active Amorphous Iridium Oxide Catalysts ACS Catalysis 2021, 11: 10084-10094. DOI: 10.1021/acscatal.1c00818.
  • Cation-exchanged conductive Mn2DSBDC metal–organic frameworks: Synthesis, structure, and THz conductivityPattengale B, Neu J, Tada A, Hu G, Karpovich C, Brudvig G. Cation-exchanged conductive Mn2DSBDC metal–organic frameworks: Synthesis, structure, and THz conductivity Polyhedron 2021, 203: 115182. DOI: 10.1016/j.poly.2021.115182.
  • Tuning the Conduction Band for Interfacial Electron Transfer: Dye-Sensitized Sn x Ti1–x O2 Photoanodes for Water SplittingSpies J, Swierk J, Kelly H, Capobianco M, Regan K, Batista V, Brudvig G, Schmuttenmaer C. Tuning the Conduction Band for Interfacial Electron Transfer: Dye-Sensitized Sn x Ti1–x O2 Photoanodes for Water Splitting ACS Applied Energy Materials 2021, 4: 4695-4703. DOI: 10.1021/acsaem.1c00305.
  • THz spectroscopy of emerging materials for light driven processes and energy harvestingNeu J, Pattengale B, Ostresh S, Capobianco M, Brudvig G. THz spectroscopy of emerging materials for light driven processes and energy harvesting Proceedings Of SPIE 2021, 11685: 116850x-116850x-8. DOI: 10.1117/12.2591087.
  • Towards Operando Electron Transfer Dynamics Measured Using Time-Resolved Terahertz SpectroelectrochemistrySpies J, Tayvah U, Neu J, Brudvig G, Schmuttenmaer C. Towards Operando Electron Transfer Dynamics Measured Using Time-Resolved Terahertz Spectroelectrochemistry 2021, 00: 1-2. DOI: 10.1109/irmmw-thz50926.2021.9567552.
  • THz-TDS and TRTS of Metal Organic Frameworks and 2D MaterialsNeu J, Pattengale B, Ostresh S, Capobianco M, Brudvig G, Schmuttenmaer C. THz-TDS and TRTS of Metal Organic Frameworks and 2D Materials 2021, 00: 1-1. DOI: 10.1109/irmmw-thz50926.2021.9567198.
  • Photoinduced Charge Transport in Conductive Metal Organic FrameworksOstresh S, Nyakuchena J, Pattenale B, Neu J, Streater D, Fiankor C, Hu W, Kinigstein E, Zhang J, Zhang X, Schmuttenmaer C, Huang J, Brudvig G. Photoinduced Charge Transport in Conductive Metal Organic Frameworks 2021, 00: 1-2. DOI: 10.1109/irmmw-thz50926.2021.9567551.
  • Metal Dopants Increase THz-Photoconductivity in g-C3N4Capobianco M, Pattengale B, Neu J, Brudvig G, Schmuttenmaer C. Metal Dopants Increase THz-Photoconductivity in g-C3N4 2021, 00: 1-2. DOI: 10.1109/irmmw-thz50926.2021.9567490.
  • Nelly: An Open-Source Package for Complex Refractive Index Extraction for Terahertz Spectroscopy on Layered SamplesTayvah U, Spies J, Neu J, Brudvig G, Schmuttenmaer C. Nelly: An Open-Source Package for Complex Refractive Index Extraction for Terahertz Spectroscopy on Layered Samples 2021, 00: 1-2. DOI: 10.1109/irmmw-thz50926.2021.9567452.
  • 8.22 Oxygen Evolution of Photosystem IIHuang H, Brudvig G. 8.22 Oxygen Evolution of Photosystem II 2021, 569-588. DOI: 10.1016/b978-0-12-409547-2.14871-1.
  • Kinetic modeling of substrate-water exchange in Photosystem IIHuang H, Brudvig G. Kinetic modeling of substrate-water exchange in Photosystem II BBA Advances 2021, 1: 100014. DOI: 10.1016/j.bbadva.2021.100014.
  • Quantitative assessment of chlorophyll types in cryo-EM maps of photosystem I acclimated to far-red lightGisriel C, Huang H, Reiss K, Flesher D, Batista V, Bryant D, Brudvig G, Wang J. Quantitative assessment of chlorophyll types in cryo-EM maps of photosystem I acclimated to far-red light BBA Advances 2021, 1: 100019. DOI: 10.1016/j.bbadva.2021.100019.
  • Corrigendum to Quantitative assessment of chlorophyll types in cryo-EM maps of photosystem I acclimated to far-red light BBA Advances 1 (2021) 100019Gisriel C, Huang H, Reiss K, Flesher D, Batista V, Bryant D, Brudvig G, Wang J. Corrigendum to Quantitative assessment of chlorophyll types in cryo-EM maps of photosystem I acclimated to far-red light BBA Advances 1 (2021) 100019 BBA Advances 2021, 1: 100024. DOI: 10.1016/j.bbadva.2021.100024.
  • Cryo-EM Structure of Monomeric Photosystem II from Synechocystis sp. PCC 6803 Lacking the Water-Oxidation ComplexGisriel C, Zhou K, Huang H, Debus R, Xiong Y, Brudvig G. Cryo-EM Structure of Monomeric Photosystem II from Synechocystis sp. PCC 6803 Lacking the Water-Oxidation Complex Joule 2020, 4: 2131-2148. DOI: 10.1016/j.joule.2020.07.016.
  • Tribute to Charles A. SchmuttenmaerSpies J, Neu J, Brudvig G, Johnson M. Tribute to Charles A. Schmuttenmaer The Journal Of Physical Chemistry C 2020, 124: 22333-22334. DOI: 10.1021/acs.jpcc.0c08271.
  • Surface-Attached Molecular Catalysts on Visible-Light-Absorbing Semiconductors: Opportunities and Challenges for a Stable Hybrid Water-Splitting PhotoanodeLiu H, Cody C, Jayworth J, Crabtree R, Brudvig G. Surface-Attached Molecular Catalysts on Visible-Light-Absorbing Semiconductors: Opportunities and Challenges for a Stable Hybrid Water-Splitting Photoanode ACS Energy Letters 2020, 5: 3195-3202. DOI: 10.1021/acsenergylett.0c01719.
  • Synthesis of organometallic pincer-supported cobalt(II) complexesTownsend T, Bernskoetter W, Brudvig G, Hazari N, Lant H, Mercado B. Synthesis of organometallic pincer-supported cobalt(II) complexes Polyhedron 2020, 177: 114308. DOI: 10.1016/j.poly.2019.114308.
  • Study of Water and Proton Channels Near to the Oxygen Evolving Complex of Photosystem IIMatta D, Reiss K, Brudvig G, Batista V, Gunner M. Study of Water and Proton Channels Near to the Oxygen Evolving Complex of Photosystem II Biophysical Journal 2020, 118: 609a. DOI: 10.1016/j.bpj.2019.11.3290.
  • The Mechanism of Substrate Delivery and Activation in the Solar Water Oxidation Reaction of Photosystem IILakshmi K, Kalendra V, Banerjee G, Ghosh I, Yang K, Batista V, Brudvig G. The Mechanism of Substrate Delivery and Activation in the Solar Water Oxidation Reaction of Photosystem II Biophysical Journal 2020, 118: 610a. DOI: 10.1016/j.bpj.2019.11.3292.
  • 13. Reimagining Solar Fuels to Power the Planet with Renewable EnergyBrudvig G. 13. Reimagining Solar Fuels to Power the Planet with Renewable Energy 2019, 122-127. DOI: 10.12987/9780300248890-015.
  • Synthesis and Reactivity of Paramagnetic Nickel Polypyridyl Complexes Relevant to C(sp2)–C(sp3)Coupling ReactionsBeromi M, Brudvig G, Hazari N, Lant H, Mercado B. Synthesis and Reactivity of Paramagnetic Nickel Polypyridyl Complexes Relevant to C(sp2)–C(sp3)Coupling Reactions Angewandte Chemie 2019, 131: 6155-6159. DOI: 10.1002/ange.201901866.
  • Progress Towards Unraveling the Water-Oxidation Mechanism of Photosystem IIHuang H, Ghosh I, Banerjee G, Brudvig G. Progress Towards Unraveling the Water-Oxidation Mechanism of Photosystem II 2019, 285-306. DOI: 10.1142/9789813276925_0014.
  • Engendering Catalytic Activity by Increasing Dynamics in a Designed EnzymePreston J, Everson B, Giroud F, Vinyard D, Greenland K, Bjerkefeldt E, Minteer S, Brudvig G, Koder R. Engendering Catalytic Activity by Increasing Dynamics in a Designed Enzyme Biophysical Journal 2019, 116: 68a. DOI: 10.1016/j.bpj.2018.11.411.
  • N,N,O Pincer Ligand with a Deprotonatable Site That Promotes Redox‐Leveling, High Mn Oxidation States, and a Mn2O2 Dimer Competent for Catalytic Oxygen EvolutionLant H, Michaelos T, Sharninghausen L, Mercado B, Crabtree R, Brudvig G. N,N,O Pincer Ligand with a Deprotonatable Site That Promotes Redox‐Leveling, High Mn Oxidation States, and a Mn2O2 Dimer Competent for Catalytic Oxygen Evolution European Journal Of Inorganic Chemistry 2019, 2019: 2115-2123. DOI: 10.1002/ejic.201801343.
  • Modification of a pyridine-alkoxide ligand during the synthesis of coordination compoundsShopov D, Sharninghausen L, Sinha S, Mercado B, Brudvig G, Crabtree R. Modification of a pyridine-alkoxide ligand during the synthesis of coordination compounds Inorganica Chimica Acta 2019, 484: 75-78. DOI: 10.1016/j.ica.2018.09.020.
  • Unusual Stability of a Bacteriochlorin Electrocatalyst under Reductive Conditions. A Case Study on CO2 Conversion to COJiang J, Matula A, Swierk J, Romano N, Wu Y, Batista V, Crabtree R, Lindsey J, Wang H, Brudvig G. Unusual Stability of a Bacteriochlorin Electrocatalyst under Reductive Conditions. A Case Study on CO2 Conversion to CO ACS Catalysis 2018, 8: 10131-10136. DOI: 10.1021/acscatal.8b02991.
  • Some crystal growth strategies for diffraction structure studies of iridium complexesSharninghausen L, Sinha S, Shopov D, Brudvig G, Crabtree R. Some crystal growth strategies for diffraction structure studies of iridium complexes Inorganica Chimica Acta 2018, 480: 183-188. DOI: 10.1016/j.ica.2018.05.017.
  • Water-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation CatalystRudshteyn B, Fisher K, Lant H, Yang K, Mercado B, Brudvig G, Crabtree R, Batista V. Water-Nucleophilic Attack Mechanism for the CuII(pyalk)2 Water-Oxidation Catalyst ACS Catalysis 2018, 8: 7952-7960. DOI: 10.1021/acscatal.8b02466.
  • Direct Interfacial Electron Transfer from High-Potential Porphyrins into Semiconductor Surfaces: A Comparison of Linkers and Anchoring GroupsJiang J, Spies J, Swierk J, Matula A, Regan K, Romano N, Brennan B, Crabtree R, Batista V, Schmuttenmaer C, Brudvig G. Direct Interfacial Electron Transfer from High-Potential Porphyrins into Semiconductor Surfaces: A Comparison of Linkers and Anchoring Groups The Journal Of Physical Chemistry C 2018, 122: 13529-13539. DOI: 10.1021/acs.jpcc.7b12405.
  • Engendering Methane Monooxygenase and Hydrogen Peroxide Oxidase Activity into a Designed Dimetal Protein by Increasing Protein DynamicsKoder R, Preston J, Everson B, Bjerkefeldt E, Macazo F, Giroud F, Minteer S, Vinyard D, Brudvig G. Engendering Methane Monooxygenase and Hydrogen Peroxide Oxidase Activity into a Designed Dimetal Protein by Increasing Protein Dynamics Biophysical Journal 2018, 114: 411a. DOI: 10.1016/j.bpj.2017.11.2276.
  • Catalysing water oxidation using nature’s metalBrudvig G. Catalysing water oxidation using nature’s metal Nature Catalysis 2018, 1: 10-11. DOI: 10.1038/s41929-017-0013-1.
  • Linker Length-Dependent Electron-Injection Dynamics of Trimesitylporphyrins on SnO2 FilmsLee S, Regan K, Hedström S, Matula A, Chaudhuri S, Crabtree R, Batista V, Schmuttenmaer C, Brudvig G. Linker Length-Dependent Electron-Injection Dynamics of Trimesitylporphyrins on SnO2 Films The Journal Of Physical Chemistry C 2017, 121: 22690-22699. DOI: 10.1021/acs.jpcc.7b07855.
  • Synthesis and Characterization of Iridium(V) Coordination Complexes With an N,O‐Donor Organic LigandSharninghausen L, Sinha S, Shopov D, Mercado B, Balcells D, Brudvig G, Crabtree R. Synthesis and Characterization of Iridium(V) Coordination Complexes With an N,O‐Donor Organic Ligand Angewandte Chemie 2017, 129: 13227-13231. DOI: 10.1002/ange.201707593.
  • Antimony Complexes for Electrocatalysis: Activity of a Main‐Group Element in Proton ReductionJiang J, Materna K, Hedström S, Yang K, Crabtree R, Batista V, Brudvig G. Antimony Complexes for Electrocatalysis: Activity of a Main‐Group Element in Proton Reduction Angewandte Chemie 2017, 129: 9239-9243. DOI: 10.1002/ange.201704700.
  • Alternative Electron Acceptors for Photosystem IIWiwczar J, Brudvig G. Alternative Electron Acceptors for Photosystem II 2017, 51-66. DOI: 10.1007/978-3-319-48873-8_4.
  • Electrocatalytic Water Oxidation by a Copper(II) Complex of an Oxidation-Resistant LigandFisher K, Materna K, Mercado B, Crabtree R, Brudvig G. Electrocatalytic Water Oxidation by a Copper(II) Complex of an Oxidation-Resistant Ligand ACS Catalysis 2017, 7: 3384-3387. DOI: 10.1021/acscatal.7b00494.
  • Photodriven Oxidation of Surface-Bound Iridium-Based Molecular Water-Oxidation Catalysts on Perylene-3,4-dicarboximide-Sensitized TiO2 Electrodes Protected by an Al2O3 LayerKamire R, Materna K, Hoffeditz W, Phelan B, Thomsen J, Farha O, Hupp J, Brudvig G, Wasielewski M. Photodriven Oxidation of Surface-Bound Iridium-Based Molecular Water-Oxidation Catalysts on Perylene-3,4-dicarboximide-Sensitized TiO2 Electrodes Protected by an Al2O3 Layer The Journal Of Physical Chemistry C 2017, 121: 3752-3764. DOI: 10.1021/acs.jpcc.6b11672.
  • A pomegranate-structured sulfur cathode material with triple confinement of lithium polysulfides for high-performance lithium–sulfur batteriesMi Y, Liu W, Wang Q, Jiang J, Brudvig G, Zhou H, Wang H. A pomegranate-structured sulfur cathode material with triple confinement of lithium polysulfides for high-performance lithium–sulfur batteries Journal Of Materials Chemistry A 2017, 5: 11788-11793. DOI: 10.1039/c7ta00035a.
  • Synthesis of pyridine-alkoxide ligands for formation of polynuclear complexesShopov D, Sharninghausen L, Sinha S, Borowski J, Mercado B, Brudvig G, Crabtree R. Synthesis of pyridine-alkoxide ligands for formation of polynuclear complexes New Journal Of Chemistry 2017, 41: 6709-6719. DOI: 10.1039/c7nj01845b.
  • Solvent Dependence of Lateral Charge Transfer in a Porphyrin MonolayerBrennan B, Regan K, Durrell A, Schmuttenmaer C, Brudvig G. Solvent Dependence of Lateral Charge Transfer in a Porphyrin Monolayer ACS Energy Letters 2016, 2: 168-173. DOI: 10.1021/acsenergylett.6b00583.
  • High-Potential Porphyrins Supported on SnO2 and TiO2 Surfaces for Photoelectrochemical ApplicationsJiang J, Swierk J, Materna K, Hedström S, Lee S, Crabtree R, Schmuttenmaer C, Batista V, Brudvig G. High-Potential Porphyrins Supported on SnO2 and TiO2 Surfaces for Photoelectrochemical Applications The Journal Of Physical Chemistry C 2016, 120: 28971-28982. DOI: 10.1021/acs.jpcc.6b10350.
  • Ferrocene‐Promoted Long‐Cycle Lithium–Sulfur BatteriesMi Y, Liu W, Yang K, Jiang J, Fan Q, Weng Z, Zhong Y, Wu Z, Brudvig G, Batista V, Zhou H, Wang H. Ferrocene‐Promoted Long‐Cycle Lithium–Sulfur Batteries Angewandte Chemie 2016, 128: 15038-15042. DOI: 10.1002/ange.201609147.
  • Rutile TiO2 as an Anode Material for Water-Splitting Dye-Sensitized Photoelectrochemical CellsSwierk J, Regan K, Jiang J, Brudvig G, Schmuttenmaer C. Rutile TiO2 as an Anode Material for Water-Splitting Dye-Sensitized Photoelectrochemical Cells ACS Energy Letters 2016, 1: 603-606. DOI: 10.1021/acsenergylett.6b00279.
  • Heterogenized Iridium Water-Oxidation Catalyst from a Silatrane PrecursorMaterna K, Rudshteyn B, Brennan B, Kane M, Bloomfield A, Huang D, Shopov D, Batista V, Crabtree R, Brudvig G. Heterogenized Iridium Water-Oxidation Catalyst from a Silatrane Precursor ACS Catalysis 2016, 6: 5371-5377. DOI: 10.1021/acscatal.6b01101.
  • Surface-Induced Deprotection of THP-Protected Hydroxamic Acids on Titanium DioxideBrennan B, Koenigsmann C, Materna K, Kim P, Koepf M, Crabtree R, Schmuttenmaer C, Brudvig G. Surface-Induced Deprotection of THP-Protected Hydroxamic Acids on Titanium Dioxide The Journal Of Physical Chemistry C 2016, 120: 12495-12502. DOI: 10.1021/acs.jpcc.6b02635.
  • A new method for the synthesis of β-cyano substituted porphyrins and their use as sensitizers in photoelectrochemical devicesAntoniuk-Pablant A, Terazono Y, Brennan B, Sherman B, Megiatto J, Brudvig G, Moore A, Moore T, Gust D. A new method for the synthesis of β-cyano substituted porphyrins and their use as sensitizers in photoelectrochemical devices Journal Of Materials Chemistry A 2016, 4: 2976-2985. DOI: 10.1039/c5ta07226c.
  • Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidationLi W, He D, Sheehan S, He Y, Thorne J, Yao X, Brudvig G, Wang D. Comparison of heterogenized molecular and heterogeneous oxide catalysts for photoelectrochemical water oxidation Energy & Environmental Science 2016, 9: 1794-1802. DOI: 10.1039/c5ee03871e.
  • Structure–function relationships in single molecule rectification by N -phenylbenzamide derivativesKoenigsmann C, Ding W, Koepf M, Batra A, Venkataraman L, Negre C, Brudvig G, Crabtree R, Batista V, Schmuttenmaer C. Structure–function relationships in single molecule rectification by N -phenylbenzamide derivatives New Journal Of Chemistry 2016, 40: 7373-7378. DOI: 10.1039/c6nj00870d.
  • Mechanism of Manganese-Catalyzed Oxygen Evolution from Experimental and Theoretical Analyses of 18O Kinetic Isotope EffectsKhan S, Yang K, Ertem M, Batista V, Brudvig G. Mechanism of Manganese-Catalyzed Oxygen Evolution from Experimental and Theoretical Analyses of 18O Kinetic Isotope Effects ACS Catalysis 2015, 5: 7104-7113. DOI: 10.1021/acscatal.5b01976.
  • Comparison of dppf‐Supported Nickel Precatalysts for the Suzuki–Miyaura Reaction: The Observation and Activity of Nickel(I)Guard L, Beromi M, Brudvig G, Hazari N, Vinyard D. Comparison of dppf‐Supported Nickel Precatalysts for the Suzuki–Miyaura Reaction: The Observation and Activity of Nickel(I) Angewandte Chemie 2015, 127: 13550-13554. DOI: 10.1002/ange.201505699.
  • Hematite‐Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono‐ and Multilayers of Iridium Oxygen‐Evolution CatalystsLi W, Sheehan S, He D, He Y, Yao X, Grimm R, Brudvig G, Wang D. Hematite‐Based Solar Water Splitting in Acidic Solutions: Functionalization by Mono‐ and Multilayers of Iridium Oxygen‐Evolution Catalysts Angewandte Chemie 2015, 127: 11590-11594. DOI: 10.1002/ange.201504427.
  • ChemInform Abstract: Co(II), a Catalyst for Selective Conversion of Phenyl Rings to Carboxylic Acid Groups.Sinha S, Campos J, Brudvig G, Crabtree R. ChemInform Abstract: Co(II), a Catalyst for Selective Conversion of Phenyl Rings to Carboxylic Acid Groups. ChemInform 2015, 46: no-no. DOI: 10.1002/chin.201515199.
  • Triplet Oxygen Evolution Catalyzed by a Biomimetic Oxomanganese Complex: Functional Role of the Carboxylate BufferRivalta I, Yang K, Brudvig G, Batista V. Triplet Oxygen Evolution Catalyzed by a Biomimetic Oxomanganese Complex: Functional Role of the Carboxylate Buffer ACS Catalysis 2015, 5: 2384-2390. DOI: 10.1021/acscatal.5b00048.
  • Interfacial electron transfer in photoanodes based on phosphorus( v ) porphyrin sensitizers co-deposited on SnO 2 with the Ir(III)Cp* water oxidation precatalystPoddutoori P, Thomsen J, Milot R, Sheehan S, Negre C, Garapati V, Schmuttenmaer C, Batista V, Brudvig G, van der Est A. Interfacial electron transfer in photoanodes based on phosphorus( v ) porphyrin sensitizers co-deposited on SnO 2 with the Ir(III)Cp* water oxidation precatalyst Journal Of Materials Chemistry A 2015, 3: 3868-3879. DOI: 10.1039/c4ta07018f.
  • Solar energy conversion by photosystem IIBrudvig G. Solar energy conversion by photosystem II Biochimica Et Biophysica Acta (BBA) - Bioenergetics 2014, 1837: e118. DOI: 10.1016/j.bbabio.2014.05.313.
  • Structural Studies of Oxomanganese Complexes for Water Oxidation CatalysisRivalta I, Brudvig G, Batista V. Structural Studies of Oxomanganese Complexes for Water Oxidation Catalysis 2014, 1-14. DOI: 10.1002/9781118698648.ch1.
  • Photoelectrochemical oxidation of a turn-on fluorescent probe mediated by a surface MnII catalyst covalently attached to TiO2 nanoparticlesDurrell A, Li G, Koepf M, Young K, Negre C, Allen L, McNamara W, Song H, Batista V, Crabtree R, Brudvig G. Photoelectrochemical oxidation of a turn-on fluorescent probe mediated by a surface MnII catalyst covalently attached to TiO2 nanoparticles Journal Of Catalysis 2014, 310: 37-44. DOI: 10.1016/j.jcat.2013.07.001.
  • Organosilatrane building blocksBrennan B, Gust D, Brudvig G. Organosilatrane building blocks Tetrahedron Letters 2014, 55: 1062-1064. DOI: 10.1016/j.tetlet.2013.12.082.
  • Co( ii ), a catalyst for selective conversion of phenyl rings to carboxylic acid groupsSinha S, Campos J, Brudvig G, Crabtree R. Co( ii ), a catalyst for selective conversion of phenyl rings to carboxylic acid groups RSC Advances 2014, 4: 49395-49399. DOI: 10.1039/c4ra10510a.
  • Electron Injection Dynamics from Photoexcited Porphyrin Dyes into SnO2 and TiO2 NanoparticlesMilot R, Moore G, Crabtree R, Brudvig G, Schmuttenmaer C. Electron Injection Dynamics from Photoexcited Porphyrin Dyes into SnO2 and TiO2 Nanoparticles The Journal Of Physical Chemistry C 2013, 117: 21662-21670. DOI: 10.1021/jp406734t.
  • Synthesis and Properties of NHC-Supported Palladium(I) Dimers with Bridging Allyl, Cyclopentadienyl, and Indenyl LigandsDai W, Chalkley M, Brudvig G, Hazari N, Melvin P, Pokhrel R, Takase M. Synthesis and Properties of NHC-Supported Palladium(I) Dimers with Bridging Allyl, Cyclopentadienyl, and Indenyl Ligands Organometallics 2013, 32: 5114-5127. DOI: 10.1021/om400687m.
  • Modular Assembly of High-Potential Zinc Porphyrin Photosensitizers Attached to TiO2 with a Series of Anchoring GroupsMartini L, Moore G, Milot R, Cai L, Sheehan S, Schmuttenmaer C, Brudvig G, Crabtree R. Modular Assembly of High-Potential Zinc Porphyrin Photosensitizers Attached to TiO2 with a Series of Anchoring Groups The Journal Of Physical Chemistry C 2013, 117: 14526-14533. DOI: 10.1021/jp4053456.
  • ChemInform Abstract: Comparison of Primary Oxidants for Water‐Oxidation CatalysisParent A, Crabtree R, Brudvig G. ChemInform Abstract: Comparison of Primary Oxidants for Water‐Oxidation Catalysis ChemInform 2013, 44: no-no. DOI: 10.1002/chin.201322207.
  • Water oxidation chemistry of photosystem IIBrudvig G. Water oxidation chemistry of photosystem II The FASEB Journal 2013, 27: 98.1-98.1. DOI: 10.1096/fasebj.27.1_supplement.98.1.
  • (Invited) High-Potential Porphyrin Photosensitizers for Solar Water-Oxidation CatalysisBrudvig G. (Invited) High-Potential Porphyrin Photosensitizers for Solar Water-Oxidation Catalysis ECS Meeting Abstracts 2013, MA2013-01: 1262-1262. DOI: 10.1149/ma2013-01/36/1262.
  • Cp* Iridium Precatalysts for Selective C–H Oxidation with Sodium Periodate As the Terminal OxidantZhou M, Hintermair U, Hashiguchi B, Parent A, Hashmi S, Elimelech M, Periana R, Brudvig G, Crabtree R. Cp* Iridium Precatalysts for Selective C–H Oxidation with Sodium Periodate As the Terminal Oxidant Organometallics 2013, 32: 957-965. DOI: 10.1021/om301252w.
  • Plasmonic Enhancement of Dye-Sensitized Solar Cells Using Core–Shell–Shell NanostructuresSheehan S, Noh H, Brudvig G, Cao H, Schmuttenmaer C. Plasmonic Enhancement of Dye-Sensitized Solar Cells Using Core–Shell–Shell Nanostructures The Journal Of Physical Chemistry C 2013, 117: 927-934. DOI: 10.1021/jp311881k.
  • 3.15 Complex Systems: PhotosynthesisPokhrel R, Brudvig G. 3.15 Complex Systems: Photosynthesis 2013, 385-422. DOI: 10.1016/b978-0-08-097774-4.00313-2.
  • Photosystem IIMcConnell I, Brudvig G. Photosystem II 2013, 1879-1882. DOI: 10.1007/978-3-642-16712-6_23.
  • Artificial photosynthesis as a frontier technology for energy sustainabilityFaunce T, Styring S, Wasielewski M, Brudvig G, Rutherford A, Messinger J, Lee A, Hill C, deGroot H, Fontecave M, MacFarlane D, Hankamer B, Nocera D, Tiede D, Dau H, Hillier W, Wang L, Amal R. Artificial photosynthesis as a frontier technology for energy sustainability Energy & Environmental Science 2013, 6: 1074-1076. DOI: 10.1039/c3ee40534f.
  • Computational Studies of the Oxygen-Evolving Complex of Photosystem II and Biomimetic Oxomanganese Complexes for Renewable Energy ApplicationsRivalta I, Brudvig G, Batista V. Computational Studies of the Oxygen-Evolving Complex of Photosystem II and Biomimetic Oxomanganese Complexes for Renewable Energy Applications 2013, 1133: 203-215. DOI: 10.1021/bk-2013-1133.ch011.
  • Bioinspired High-Potential Porphyrin PhotoanodesMoore G, Konezny S, Song H, Milot R, Blakemore J, Lee M, Batista V, Schmuttenmaer C, Crabtree R, Brudvig G. Bioinspired High-Potential Porphyrin Photoanodes The Journal Of Physical Chemistry C 2012, 116: 4892-4902. DOI: 10.1021/jp210096m.
  • A tridentate Ni pincer for aqueous electrocatalytic hydrogen productionLuca O, Konezny S, Blakemore J, Colosi D, Saha S, Brudvig G, Batista V, Crabtree R. A tridentate Ni pincer for aqueous electrocatalytic hydrogen production New Journal Of Chemistry 2012, 36: 1149-1152. DOI: 10.1039/c2nj20912h.
  • Photosynthesis: Energy ConversionUlas G, Brudvig G. Photosynthesis: Energy Conversion 2011 DOI: 10.1002/9781119951438.eibc0455.
  • Fluctuation-Induced Tunneling Conductivity in Nanoporous TiO2 Thin FilmsKonezny S, Richter C, Snoeberger R, Parent A, Brudvig G, Schmuttenmaer C, Batista V. Fluctuation-Induced Tunneling Conductivity in Nanoporous TiO2 Thin Films The Journal Of Physical Chemistry Letters 2011, 2: 1931-1936. DOI: 10.1021/jz200853v.
  • Energy Conversion in Photosynthesis: A Paradigm for Solar Fuel ProductionMoore G, Brudvig G. Energy Conversion in Photosynthesis: A Paradigm for Solar Fuel Production Annual Review Of Condensed Matter Physics 2011, 2: 303-327. DOI: 10.1146/annurev-conmatphys-062910-140503.
  • Anodic Deposition of a Robust Iridium Water-Oxidation Catalyst from Organometallic PrecursorsBlakemore J, Schley N, Kushner-Lenhoff M, Brudvig G, Crabtree R. Anodic Deposition of a Robust Iridium Water-Oxidation Catalyst from Organometallic Precursors ECS Meeting Abstracts 2011, MA2011-01: 139-139. DOI: 10.1149/ma2011-01/4/139.
  • An Iridium(IV) Species, [Cp*Ir(NHC)Cl]+, Related to a Water-Oxidation CatalystBrewster T, Blakemore J, Schley N, Incarvito C, Hazari N, Brudvig G, Crabtree R. An Iridium(IV) Species, [Cp*Ir(NHC)Cl]+, Related to a Water-Oxidation Catalyst Organometallics 2011, 30: 965-973. DOI: 10.1021/om101016s.
  • Energy Conversion in Photosynthesis: A Paradigm for Solar Fuel ProductionMoore, G.F. and Brudvig, G.W. (2011) Energy Conversion in Photosynthesis: A Paradigm for Solar Fuel Production. Annu. Rev. Condensed Matter Phys. 2, 303-327.
  • A visible light water-splitting cell with a photoanode formed by codeposition of a high-potential porphyrin and an iridium water-oxidation catalystMoore G, Blakemore J, Milot R, Hull J, Song H, Cai L, Schmuttenmaer C, Crabtree R, Brudvig G. A visible light water-splitting cell with a photoanode formed by codeposition of a high-potential porphyrin and an iridium water-oxidation catalyst Energy & Environmental Science 2011, 4: 2389-2392. DOI: 10.1039/c1ee01037a.
  • Thermal stability of [Mn(III)(O)2Mn(IV)(H2O)2(Terpy)2](NO3)3 (Terpy=2,2′:6′,2″-terpyridine) in aqueous solutionZhang F, Cady C, Brudvig G, Hou H. Thermal stability of [Mn(III)(O)2Mn(IV)(H2O)2(Terpy)2](NO3)3 (Terpy=2,2′:6′,2″-terpyridine) in aqueous solution Inorganica Chimica Acta 2011, 366: 128-133. DOI: 10.1016/j.ica.2010.10.021.
  • Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursorsBlakemore J, Schley N, Olack G, Incarvito C, Brudvig G, Crabtree R. Anodic deposition of a robust iridium-based water-oxidation catalyst from organometallic precursors Chemical Science 2011, 2: 94-98. DOI: 10.1039/c0sc00418a.
  • ChemInform Abstract: Assembly of High‐Valent Oxomanganese Clusters in Aqueous Solution. Redox Equilibrium of Water‐Stable Mn3O4+ 4 and Mn2O3+ 2 Complexes.SARNESKI J, THORP H, BRUDVIG G, CRABTREE R, SCHULTE G. ChemInform Abstract: Assembly of High‐Valent Oxomanganese Clusters in Aqueous Solution. Redox Equilibrium of Water‐Stable Mn3O4+ 4 and Mn2O3+ 2 Complexes. ChemInform 2010, 22: no-no. DOI: 10.1002/chin.199102283.
  • ChemInform Abstract: Bioinorganic Chemistry of Manganese Related to Photosynthetic Oxygen EvolutionBRUDVIG G, CRABTREE R. ChemInform Abstract: Bioinorganic Chemistry of Manganese Related to Photosynthetic Oxygen Evolution ChemInform 2010, 22: no-no. DOI: 10.1002/chin.199112361.
  • ChemInform Abstract: Alkyl Hydroperoxide Oxidation of Alkanes and Alkenes with a Highly Active Mn Catalyst.SARNESKI J, MICHOS D, THORP H, DIDIUK M, POON T, BLEWITT J, BRUDVIG G, CRABTREE R. ChemInform Abstract: Alkyl Hydroperoxide Oxidation of Alkanes and Alkenes with a Highly Active Mn Catalyst. ChemInform 2010, 22: no-no. DOI: 10.1002/chin.199152093.
  • ChemInform Abstract: High‐Valent Oxomanganese Clusters: Structural and Mechanistic Work Relevant to the Oxygen‐Evolving Center in Photosystem IIMANCHANDA R, BRUDVIG G, CRABTREE R. ChemInform Abstract: High‐Valent Oxomanganese Clusters: Structural and Mechanistic Work Relevant to the Oxygen‐Evolving Center in Photosystem II ChemInform 2010, 27: no-no. DOI: 10.1002/chin.199613284.
  • ChemInform Abstract: Use of EPR Spectroscopy to Study Macromolecular Structure and FunctionBiswas R, Kuhne H, Brudvig G, Gopalan V. ChemInform Abstract: Use of EPR Spectroscopy to Study Macromolecular Structure and Function ChemInform 2010, 32: no-no. DOI: 10.1002/chin.200141300.
  • Water -stable, hydroxamate anchors for functionalization of TiO 2 surfaces with ultrafast interfacial electron transferMcNamara W, Milot R, Song H, Snoeberger R, Batista V, Schmuttenmaer C, Brudvig G, Crabtree R. Water -stable, hydroxamate anchors for functionalization of TiO 2 surfaces with ultrafast interfacial electron transfer Energy & Environmental Science 2010, 3: 917-923. DOI: 10.1039/c001065k.
  • Direct Detection of Oxygen Ligation to the Mn4Ca Cluster of Photosystem II by X‐ray Emission SpectroscopyPushkar Y, Long X, Glatzel P, Brudvig G, Dismukes G, Collins T, Yachandra V, Yano J, Bergmann U. Direct Detection of Oxygen Ligation to the Mn4Ca Cluster of Photosystem II by X‐ray Emission Spectroscopy Angewandte Chemie 2009, 122: 812-815. DOI: 10.1002/ange.200905366.
  • Hydroxamate anchors for water-stable attachment to TiO 2 nanoparticlesMcNamara W, Snoeberger R, Li G, Richter C, Allen L, Milot R, Schmuttenmaer C, Crabtree R, Brudvig G, Batista V. Hydroxamate anchors for water-stable attachment to TiO 2 nanoparticles Energy & Environmental Science 2009, 2: 1173-1175. DOI: 10.1039/b910241h.
  • Deposition of an oxomanganese water oxidation catalyst on TiO 2 nanoparticles : computational modeling, assembly and characterizationLi G, Sproviero E, Snoeberger R, Iguchi N, Blakemore J, Crabtree R, Brudvig G, Batista V. Deposition of an oxomanganese water oxidation catalyst on TiO 2 nanoparticles : computational modeling, assembly and characterization Energy & Environmental Science 2009, 2: 230-238. DOI: 10.1039/b818708h.
  • Characterization of siloxane adsorbates covalently attached to TiO2Iguchi N, Cady C, Snoeberger R, Hunter B, Sproviero E, Schmuttenmaer C, Crabtree R, Brudvig G, Batista V. Characterization of siloxane adsorbates covalently attached to TiO2 Proceedings Of SPIE 2008, 7034: 70340c-70340c-8. DOI: 10.1117/12.798938.
  • ChemInform Abstract: Molecular Recognition in Homogeneous Transition Metal Catalysis: A Biomimetic Strategy for High SelectivityDas S, Brudvig G, Crabtree R. ChemInform Abstract: Molecular Recognition in Homogeneous Transition Metal Catalysis: A Biomimetic Strategy for High Selectivity ChemInform 2008, 39: no-no. DOI: 10.1002/chin.200818237.
  • PrefaceBrudvig G. Preface Coordination Chemistry Reviews 2008, 252: 231-232. DOI: 10.1016/j.ccr.2007.08.028.
  • Ligation Of The C-Terminus Of The D1 Polypeptide Of Photosystem Ii To The Oxygen Evolving Complex: A Dft-Qm/Mm StudyGascón J, Sproviero E, McEvoy J, Brudvig G, Batista V. Ligation Of The C-Terminus Of The D1 Polypeptide Of Photosystem Ii To The Oxygen Evolving Complex: A Dft-Qm/Mm Study 2008, 363-368. DOI: 10.1007/978-1-4020-6709-9_82.
  • Functional Manganese Model Chemistry Relevant to the Oxygen-Evolving Complex of Photosystem II: Oxidation of a Mn(III,IV) Complex Coupled to Deprotonation of a Terminal Water LigandCady C, Crabtree R, Brudvig G. Functional Manganese Model Chemistry Relevant to the Oxygen-Evolving Complex of Photosystem II: Oxidation of a Mn(III,IV) Complex Coupled to Deprotonation of a Terminal Water Ligand 2008, 377-381. DOI: 10.1007/978-1-4020-6709-9_85.
  • Redox Reactions of the Non-Heme Iron of Photosystem II: An EPR Spectroscopic StudyMcEvoy J, Brudvig G. Redox Reactions of the Non-Heme Iron of Photosystem II: An EPR Spectroscopic Study 2008, 141-144. DOI: 10.1007/978-1-4020-6709-9_32.
  • Ultrafast Photooxidation of Mn(II)−Terpyridine Complexes Covalently Attached to TiO2 NanoparticlesAbuabara S, Cady C, Baxter J, Schmuttenmaer C, Crabtree R, Brudvig G, Batista V. Ultrafast Photooxidation of Mn(II)−Terpyridine Complexes Covalently Attached to TiO2 Nanoparticles The Journal Of Physical Chemistry C 2007, 111: 11982-11990. DOI: 10.1021/jp072380h.
  • Water‐Splitting Chemistry of Photosystem IIMcEvoy J, Brudvig G. Water‐Splitting Chemistry of Photosystem II ChemInform 2006, 38: no-no. DOI: 10.1002/chin.200702228.
  • Secondary bonding in a six-coordinate Mn(II) complex as a model of associative substitutionCady C, Incarvito C, Brudvig G, Crabtree R. Secondary bonding in a six-coordinate Mn(II) complex as a model of associative substitution Inorganica Chimica Acta 2006, 359: 2509-2512. DOI: 10.1016/j.ica.2006.02.005.
  • A multifrequency high-field EPR (9–285GHz) investigation of a series of dichloride mononuclear penta-coordinated Mn(II) complexesDuboc C, Astier-Perret V, Chen H, Pécaut J, Crabtree R, Brudvig G, Collomb M. A multifrequency high-field EPR (9–285GHz) investigation of a series of dichloride mononuclear penta-coordinated Mn(II) complexes Inorganica Chimica Acta 2006, 359: 1541-1548. DOI: 10.1016/j.ica.2005.10.027.
  • Photosynthesis: Energy ConversionUlas G, Brudvig G. Photosynthesis: Energy Conversion 2005 DOI: 10.1002/0470862106.ia805.
  • Catalytic Oxygen Evolution by a Bioinorganic Model of the Photosystem II Oxygen-Evolving ComplexHoward D, Tinoco A, Brudvig G, Vrettos J, Allen B. Catalytic Oxygen Evolution by a Bioinorganic Model of the Photosystem II Oxygen-Evolving Complex Journal Of Chemical Education 2005, 82: 791. DOI: 10.1021/ed082p791.
  • Mechanistic Comparisons Between Photosystem II and Cytochrome c OxidaseBrudvig G, Wikström M. Mechanistic Comparisons Between Photosystem II and Cytochrome c Oxidase 2005, 22: 697-713. DOI: 10.1007/1-4020-4254-x_32.
  • Investigation of the Functional Role of Ca2+ in the Oxygen‐Evolving Complex of Photosystem II: A pH‐Dependence Study of the Substitution of Ca2+ by Sr2+Lee C, Brudvig G. Investigation of the Functional Role of Ca2+ in the Oxygen‐Evolving Complex of Photosystem II: A pH‐Dependence Study of the Substitution of Ca2+ by Sr2+ Journal Of The Chinese Chemical Society 2004, 51: 1221-1228. DOI: 10.1002/jccs.200400178.
  • Location of EPR-Active Spins Buried in Proteins from the Simulation of the Spin−Lattice Relaxation Enhancement Caused by Dy(III) Complexes †MacArthur R, Brudvig G. Location of EPR-Active Spins Buried in Proteins from the Simulation of the Spin−Lattice Relaxation Enhancement Caused by Dy(III) Complexes † The Journal Of Physical Chemistry B 2004, 108: 9390-9396. DOI: 10.1021/jp0355713.
  • Structure-based mechanism of photosynthetic water oxidationMcEvoy J, Brudvig G. Structure-based mechanism of photosynthetic water oxidation Physical Chemistry Chemical Physics 2004, 6: 4754-4763. DOI: 10.1039/b407500e.
  • 8.20 Oxygen EvolutionVrettos J, Brudvig G. 8.20 Oxygen Evolution 2003, 507-547. DOI: 10.1016/b0-08-043748-6/08132-9.
  • Quantifying the Ion Selectivity of the Ca2+ Site in Photosystem II: Evidence for Direct Involvement of Ca2+ in O2 FormationVrettos J, Stone D, Brudvig G. Quantifying the Ion Selectivity of the Ca2+ Site in Photosystem II: Evidence for Direct Involvement of Ca2+ in O2 Formation Biochemistry 2002, 42: 848-848. DOI: 10.1021/bi027353q.
  • Electronic Structure of the P700 Special Pair from High-Frequency Electron Paramagnetic Resonance SpectroscopyPoluektov O, Utschig L, Schlesselman S, Lakshmi K, Brudvig G, Kothe G, Thurnauer M. Electronic Structure of the P700 Special Pair from High-Frequency Electron Paramagnetic Resonance Spectroscopy The Journal Of Physical Chemistry B 2002, 106: 8911-8916. DOI: 10.1021/jp021465+.
  • Proton-Coupled Electron Transfer Involving Tyrosine Z in Photosystem II †Kühne H, Brudvig G. Proton-Coupled Electron Transfer Involving Tyrosine Z in Photosystem II † The Journal Of Physical Chemistry B 2002, 106: 8189-8196. DOI: 10.1021/jp0206222.
  • Electron Paramagnetic Resonance Distance Measurements in PhotosystemsLakshmi K, Brudvig G. Electron Paramagnetic Resonance Distance Measurements in Photosystems 2002, 19: 513-567. DOI: 10.1007/0-306-47109-4_12.
  • Electrochemical properties of [MnIII(terpy)(N3)3] (terpy=2,2′:6′,2″-terpyridine) in CH3CN Electrogeneration of dimanganese(II) di-μ-azido and dimanganese(IV) di-μ-oxo complexesBaffert C, Chen H, Crabtree R, Brudvig G, Collomb M. Electrochemical properties of [MnIII(terpy)(N3)3] (terpy=2,2′:6′,2″-terpyridine) in CH3CN Electrogeneration of dimanganese(II) di-μ-azido and dimanganese(IV) di-μ-oxo complexes Journal Of Electroanalytical Chemistry 2001, 506: 99-105. DOI: 10.1016/s0022-0728(01)00488-0.
  • Direct electrochemistry of photosystem IKievit O, Brudvig G. Direct electrochemistry of photosystem I Journal Of Electroanalytical Chemistry 2001, 497: 139-149. DOI: 10.1016/s0022-0728(00)00467-8.
  • High-Field EPR Study of Carotenoid and Chlorophyll Cation Radicals in Photosystem IILakshmi K, Reifler M, Brudvig G, Poluektov O, Wagner A, Thurnauer M. High-Field EPR Study of Carotenoid and Chlorophyll Cation Radicals in Photosystem II The Journal Of Physical Chemistry B 2000, 104: 10445-10448. DOI: 10.1021/jp002558z.
  • Low-Temperature Turnover Control of Photosystem II Using Novel Metal-Containing Redox-Active HerbicidesKarki L, Lakshmi K, Szalai V, Brudvig G. Low-Temperature Turnover Control of Photosystem II Using Novel Metal-Containing Redox-Active Herbicides Journal Of The American Chemical Society 2000, 122: 5180-5188. DOI: 10.1021/ja994138x.
  • Modeling the Oxygen-Evolving Complex in Photosystem IILimburg J, Brudvig G, Crabtree R. Modeling the Oxygen-Evolving Complex in Photosystem II 2000, 509-541. DOI: 10.1142/9781848160699_0011.
  • Low-Frequency Resonance Raman Characterization of the Oxygen-Evolving Complex of Photosystem IICua A, Stewart D, Reifler M, Brudvig G, Bocian D. Low-Frequency Resonance Raman Characterization of the Oxygen-Evolving Complex of Photosystem II Journal Of The American Chemical Society 2000, 122: 2069-2077. DOI: 10.1021/ja9932885.
  • Kinetic analysis of the O2-forming reaction between [Mn(III)(dpa)2]− (dpa=dipicolinate) and potassium peroxomonosulfateLimburg J, Crabtree* R, Brudvig* G. Kinetic analysis of the O2-forming reaction between [Mn(III)(dpa)2]− (dpa=dipicolinate) and potassium peroxomonosulfate Inorganica Chimica Acta 2000, 297: 301-306. DOI: 10.1016/s0020-1693(99)00362-x.
  • Low-Temperature Optical and Resonance Raman Spectra of a Carotenoid Cation Radical in Photosystem IIVrettos J, Stewart D, de Paula J, Brudvig G. Low-Temperature Optical and Resonance Raman Spectra of a Carotenoid Cation Radical in Photosystem II The Journal Of Physical Chemistry B 1999, 103: 6403-6406. DOI: 10.1021/jp991464q.
  • Selective Raman Scattering from the Core Chlorophylls in Photosystem I via Preresonant Near-Infrared ExcitationStewart D, Cua A, Bocian D, Brudvig G. Selective Raman Scattering from the Core Chlorophylls in Photosystem I via Preresonant Near-Infrared Excitation The Journal Of Physical Chemistry B 1999, 103: 3758-3764. DOI: 10.1021/jp984409a.
  • A mechanistic and structural model for the formation and reactivity of a MnV[double bond, length half m-dash]O species in photosynthetic water oxidationLimburg J, Szalai V, Brudvig G. A mechanistic and structural model for the formation and reactivity of a MnV[double bond, length half m-dash]O species in photosynthetic water oxidation Dalton Transactions 1999, 0: 1353-1362. DOI: 10.1039/a807583b.
  • Synthesis and characterization of an internal emission standard and applications to fluorescence studies of photosystem IISchweitzer R, Brudvig G. Synthesis and characterization of an internal emission standard and applications to fluorescence studies of photosystem II Biopolymers 1998, 2: 167-171. DOI: 10.1002/(sici)1520-6343(1996)2:3<167::aid-bspy3>3.0.co;2-5.
  • Analysis of Dipolar and Exchange Interactions between Manganese and Tyrosine Z in the S2YZ • State of Acetate-Inhibited Photosystem II via EPR Spectral Simulations at X- and Q-BandsLakshmi K, Eaton S, Eaton G, Frank H, Brudvig G. Analysis of Dipolar and Exchange Interactions between Manganese and Tyrosine Z in the S2YZ • State of Acetate-Inhibited Photosystem II via EPR Spectral Simulations at X- and Q-Bands The Journal Of Physical Chemistry B 1998, 102: 8327-8335. DOI: 10.1021/jp982140p.
  • Time-Resolved Fluorescence Measurements of Photosystem II: The Effect of Quenching by Oxidized Chlorophyll ZSchweitzer R, Melkozernov A, Blankenship R, Brudvig G. Time-Resolved Fluorescence Measurements of Photosystem II: The Effect of Quenching by Oxidized Chlorophyll Z The Journal Of Physical Chemistry B 1998, 102: 8320-8326. DOI: 10.1021/jp982098y.
  • Selective Resonance Raman Scattering from Chlorophyll Z in Photosystem II via Excitation into the Near-Infrared Absorption Band of the CationCua A, Stewart D, Brudvig G, Bocian D. Selective Resonance Raman Scattering from Chlorophyll Z in Photosystem II via Excitation into the Near-Infrared Absorption Band of the Cation Journal Of The American Chemical Society 1998, 120: 4532-4533. DOI: 10.1021/ja980207g.
  • How Plants Produce DioxygenSzalai V, Brudvig G. How Plants Produce Dioxygen American Scientist 1998, 86: 542. DOI: 10.1511/1998.43.800.
  • How Plants Produce DioxygenBrudvig G, Szalai V. How Plants Produce Dioxygen American Scientist 1998, 86: 542. DOI: 10.1511/1998.6.542.
  • A New Model of Cytochrome B-559 Function Based on the Observation of A Reversible Redox-Linked Interconversion Between Two Redox forms of Cytochrome B-559Stewart D, Brudvig G. A New Model of Cytochrome B-559 Function Based on the Observation of A Reversible Redox-Linked Interconversion Between Two Redox forms of Cytochrome B-559 1998, 1113-1116. DOI: 10.1007/978-94-011-3953-3_265.
  • Engineering and Rapid Purification of Histidine-Tagged Photosystem II from Synechocystis PCC 6803Reifler M, Chisholm D, Wang J, Diner B, Brudvig G. Engineering and Rapid Purification of Histidine-Tagged Photosystem II from Synechocystis PCC 6803 1998, 1189-1192. DOI: 10.1007/978-94-011-3953-3_284.
  • A Structural and Mechanistic Model of the O2-Evolving Complex of Photosystem IISzalai V, Stone D, Brudvig G. A Structural and Mechanistic Model of the O2-Evolving Complex of Photosystem II 1998, 1403-1406. DOI: 10.1007/978-94-011-3953-3_331.
  • O2 Evolution and Permanganate Formation from High-Valent Manganese ComplexesLimburg J, Brudvig G, Crabtree R. O2 Evolution and Permanganate Formation from High-Valent Manganese Complexes Journal Of The American Chemical Society 1997, 119: 2761-2762. DOI: 10.1021/ja963899m.
  • EPR Spectroscopic Characterization of Neuronal NO SynthaseGalli C, MacArthur R, Abu-Soud H, Clark P, Stuehr D, Brudvig G. EPR Spectroscopic Characterization of Neuronal NO Synthase Biochemistry 1996, 35: 7298-7298. DOI: 10.1021/bi965003w.
  • High-valent oxomanganese clusters: structural and mechanistic work relevant to the oxygen-evolving center in photosystem IIManchanda R, Brudvig G, Crabtree R. High-valent oxomanganese clusters: structural and mechanistic work relevant to the oxygen-evolving center in photosystem II Coordination Chemistry Reviews 1995, 144: 1-38. DOI: 10.1016/0010-8545(95)01147-h.
  • Magnetic properties of the S2 state of the manganese cluster in photosystem IIKoulougliotis D, Brudvig G. Magnetic properties of the S2 state of the manganese cluster in photosystem II Journal Of Inorganic Biochemistry 1995, 59: 619. DOI: 10.1016/0162-0134(95)97710-8.
  • A (.mu.-Oxo)bis(.mu.-carboxylato)diiron(III) Complex with a Tethered Phenoxyl Radical as a Model for the Active Site of the R2 protein of Ribonucleotide ReductaseGoldberg D, Koulougliotis D, Brudvig G, Lippard S. A (.mu.-Oxo)bis(.mu.-carboxylato)diiron(III) Complex with a Tethered Phenoxyl Radical as a Model for the Active Site of the R2 protein of Ribonucleotide Reductase Journal Of The American Chemical Society 1995, 117: 3134-3144. DOI: 10.1021/ja00116a018.
  • Variations of the Diferric Exchange Coupling in the R2 Subunit of Ribonucleotide Reductase from Four Species as Determined by Saturation-Recovery EPR SpectroscopyGalli C, Atta M, Andersson K, Graeslund A, Brudvig G. Variations of the Diferric Exchange Coupling in the R2 Subunit of Ribonucleotide Reductase from Four Species as Determined by Saturation-Recovery EPR Spectroscopy Journal Of The American Chemical Society 1995, 117: 740-746. DOI: 10.1021/ja00107a017.
  • Parallel Low-Temperature Fluorescence and EPR Measurements of MN-Depleted Photosystem IISchweitzer R, Brudvig G. Parallel Low-Temperature Fluorescence and EPR Measurements of MN-Depleted Photosystem II 1995, 807-810. DOI: 10.1007/978-94-009-0173-5_192.
  • Improved Syntheses and Structure of [MnIIIMnIV(O)2(phen)4](ClO4)3.cntdot.2CH3COOH.cntdot.2H2OManchanda R, Brudvig G, de Gala S, Crabtree R. Improved Syntheses and Structure of [MnIIIMnIV(O)2(phen)4](ClO4)3.cntdot.2CH3COOH.cntdot.2H2O Inorganic Chemistry 1994, 33: 5157-5160. DOI: 10.1021/ic00100a049.
  • A modified MM2 force field for high-valent di-μ-oxo manganese dimersManchanda R, Zimmer M, Brudvig G, Crabtree R. A modified MM2 force field for high-valent di-μ-oxo manganese dimers Journal Of Molecular Structure 1994, 323: 257-266. DOI: 10.1016/0022-2860(94)08304-5.
  • Long-range electron spin-spin interactions in the bacterial photosynthetic reaction centerHirsh D, Brudvig G. Long-range electron spin-spin interactions in the bacterial photosynthetic reaction center The Journal Of Physical Chemistry 1993, 97: 13216-13222. DOI: 10.1021/j100152a028.
  • Formation of a high valent di-μ-oxo manganese dimer in aqueous solutionManchanda R, Brudvig G, Crabtree R, Sarneski J, Didiuk M. Formation of a high valent di-μ-oxo manganese dimer in aqueous solution Inorganica Chimica Acta 1993, 212: 135-137. DOI: 10.1016/s0020-1693(00)92318-1.
  • Magnetic resonance studies of the manganese cluster in photosystem IIBrudvig G, Hirsh D, Koulougliotis D. Magnetic resonance studies of the manganese cluster in photosystem II Journal Of Inorganic Biochemistry 1993, 51: 443. DOI: 10.1016/0162-0134(93)85471-j.
  • Study of oxomanganese dimers as models for the oxygen evolving center in photosystem IIManchanda R, Zimmer M, Brudvig G, Crabtree R. Study of oxomanganese dimers as models for the oxygen evolving center in photosystem II Journal Of Inorganic Biochemistry 1993, 51: 453. DOI: 10.1016/0162-0134(93)85481-m.
  • A study of high-valent manganese in aqueous phosphoric acid: disproportionation of the bis(.mu.-oxo)dimanganese(III,IV) bipyridine complex [MnIIIMnIV(.mu.-O)2(bpy)4]3+Sarneski J, Brzezinski L, Anderson B, Didiuk M, Manchanda R, Crabtree R, Brudvig G, Schulte G. A study of high-valent manganese in aqueous phosphoric acid: disproportionation of the bis(.mu.-oxo)dimanganese(III,IV) bipyridine complex [MnIIIMnIV(.mu.-O)2(bpy)4]3+ Inorganic Chemistry 1993, 32: 3265-3269. DOI: 10.1021/ic00067a012.
  • Turnover control of photosystem II: use of redox-active herbicides to form the S3 stateBocarsly J, Brudvig G. Turnover control of photosystem II: use of redox-active herbicides to form the S3 state Journal Of The American Chemical Society 1992, 114: 9762-9767. DOI: 10.1021/ja00051a006.
  • The oxygen-evolving center of photosystem II is diamagnetic in the S1 resting stateKoulougliotis D, Hirsh D, Brudvig G. The oxygen-evolving center of photosystem II is diamagnetic in the S1 resting state Journal Of The American Chemical Society 1992, 114: 8322-8323. DOI: 10.1021/ja00047a072.
  • An unusual example of multiple proton-coupled electron transfers in a high-valent oxomanganese dimer, [(phen)2MnIII(O)2MnIV(phen)2](ClO4)3 (phen = 1,10 phenanthroline)Manchanda R, Thorp H, Brudvig G, Crabtree R. An unusual example of multiple proton-coupled electron transfers in a high-valent oxomanganese dimer, [(phen)2MnIII(O)2MnIV(phen)2](ClO4)3 (phen = 1,10 phenanthroline) Inorganic Chemistry 1992, 31: 4040-4041. DOI: 10.1021/ic00046a007.
  • Using saturation-recovery EPR to measure exchange couplings in proteins: application to ribonucleotide reductaseHirsh D, Beck W, Lynch J, Que L, Brudvig G. Using saturation-recovery EPR to measure exchange couplings in proteins: application to ribonucleotide reductase Journal Of The American Chemical Society 1992, 114: 7475-7481. DOI: 10.1021/ja00045a021.
  • Assembly of high-valent oxomanganese clusters in aqueous solution. Redox equilibrium of water-stable Mn3O44+ and Mn2O23+ complexes. [Erratum to document cited in CA113(18):161042g]Sarneski J, Thorp H, Brudvig G, Crabtree R, Schulte G. Assembly of high-valent oxomanganese clusters in aqueous solution. Redox equilibrium of water-stable Mn3O44+ and Mn2O23+ complexes. [Erratum to document cited in CA113(18):161042g] Journal Of The American Chemical Society 1992, 114: 5907-5907. DOI: 10.1021/ja00040a092.
  • Towards a functional model of hydrogenase: electrocatalytic reduction of protons to dihydrogen by a nickel macrocyclic complexEfros L, Thorp H, Brudvig G, Crabtree R. Towards a functional model of hydrogenase: electrocatalytic reduction of protons to dihydrogen by a nickel macrocyclic complex Inorganic Chemistry 1992, 31: 1722-1724. DOI: 10.1021/ic00035a039.
  • Calcium binding site(s) of Photosystem II as probed by lanthanidesBakou A, Buser C, Dandulakis G, Brudvig G, Ghanotakis D. Calcium binding site(s) of Photosystem II as probed by lanthanides Biochimica Et Biophysica Acta (BBA) - Bioenergetics 1992, 1099: 131-136. DOI: 10.1016/0005-2728(92)90209-k.
  • Probing the mechanism of water oxidation in photosystem IIBrudvig G, Thorp H, Crabtree R. Probing the mechanism of water oxidation in photosystem II Accounts Of Chemical Research 1991, 24: 311-316. DOI: 10.1021/ar00010a005.
  • Temperature-dependent cyclic voltammetry of oxo-bridged dimers of relevance to photosynthetic water oxidationKalsbeck W, Thorp H, Brudvig G. Temperature-dependent cyclic voltammetry of oxo-bridged dimers of relevance to photosynthetic water oxidation Journal Of Electroanalytical Chemistry 1991, 314: 335-343. DOI: 10.1016/0022-0728(91)85448-x.
  • The chemistry of high-valent oxomanganese clusters in aqueous solution: A (IV,IV) dimer containing bridging and terminal phosphate ligandsSarneski J, Didiuk M, Thorp H, Crabtree R, Brudvig G, Faller J, Schulte G. The chemistry of high-valent oxomanganese clusters in aqueous solution: A (IV,IV) dimer containing bridging and terminal phosphate ligands Journal Of Inorganic Biochemistry 1991, 43: 372. DOI: 10.1016/0162-0134(91)84358-g.
  • A high-valent oxomanganese dimer containing bridging and terminal inorganic phosphate ligandsSarneski J, Didiuk M, Thorp H, Crabtree R, Brudvig G, Faller J, Schulte G. A high-valent oxomanganese dimer containing bridging and terminal inorganic phosphate ligands Inorganic Chemistry 1991, 30: 2833-2835. DOI: 10.1021/ic00014a002.
  • Electronic structure of trans-dioxorhenium(VI)Brewer J, Thorp H, Slagle K, Brudvig G, Gray H. Electronic structure of trans-dioxorhenium(VI) Journal Of The American Chemical Society 1991, 113: 3171-3173. DOI: 10.1021/ja00008a055.
  • Physical properties of a manganese tetramer with all-oxygen coordinationThorp H, Sarneski J, Kulawiec R, Brudvig G, Crabtree R, Papaefthymiou G. Physical properties of a manganese tetramer with all-oxygen coordination Inorganic Chemistry 1991, 30: 1153-1155. DOI: 10.1021/ic00005a053.
  • Alkyl hydroperoxide oxidation of alkanes and alkenes with a highly active Mn catalyst.Sarneski J, Michos D, Thorp H, Didiuk M, Poon T, Blewitt J, Brudvig G, Crabtree R. Alkyl hydroperoxide oxidation of alkanes and alkenes with a highly active Mn catalyst. Tetrahedron Letters 1991, 32: 1153-1156. DOI: 10.1016/s0040-4039(00)92031-8.
  • Proton-coupled electron transfer in high-valent oxomanganese dimers: role of the ancillary ligandsManchanda R, Thorp H, Brudvig G, Crabtree R. Proton-coupled electron transfer in high-valent oxomanganese dimers: role of the ancillary ligands Inorganic Chemistry 1991, 30: 494-497. DOI: 10.1021/ic00003a028.
  • Electron spin-lattice relaxation and spectral diffusion measurements on tyrosine radicals in proteinsBeck W, Innes J, Lynch J, Brudvig G. Electron spin-lattice relaxation and spectral diffusion measurements on tyrosine radicals in proteins Journal Of Magnetic Resonance (1969) 1991, 91: 12-29. DOI: 10.1016/0022-2364(91)90403-g.
  • Proton-coupled electron transfer in[(bpy)2Mn(O)2Mn(bpy)2]3+ Role of the electrode surfaceThorp H, Brudvig G, Bowden E. Proton-coupled electron transfer in[(bpy)2Mn(O)2Mn(bpy)2]3+ Role of the electrode surface Journal Of Electroanalytical Chemistry 1990, 290: 293-301. DOI: 10.1016/0022-0728(90)87440-u.
  • Assembly of high-valent oxomanganese clusters in aqueous solution. Redox equilibrium of water-stable Mn3O44+ and Mn2O23+ complexesSarneski J, Thorp H, Brudvig G, Crabtree R, Schulte G. Assembly of high-valent oxomanganese clusters in aqueous solution. Redox equilibrium of water-stable Mn3O44+ and Mn2O23+ complexes Journal Of The American Chemical Society 1990, 112: 7255-7260. DOI: 10.1021/ja00176a027.
  • ChemInform Abstract: Proton‐Coupled Electron Transfer in ((bpy)2Mn(O)2Mn(bpy)2)3+.THORP H, SARNESKI J, BRUDVIG G, CRABTREE R. ChemInform Abstract: Proton‐Coupled Electron Transfer in ((bpy)2Mn(O)2Mn(bpy)2)3+. ChemInform 1990, 21: no-no. DOI: 10.1002/chin.199013057.
  • Electron Spin-Lattice Relaxation of the Stable Tyrosine Radical D+ in Photosystem IIBeck W, Innes J, Brudvig G. Electron Spin-Lattice Relaxation of the Stable Tyrosine Radical D+ in Photosystem II 1990, 817-820. DOI: 10.1007/978-94-009-0511-5_188.
  • Coupling of the PS2 Reaction Center to the O2-Evolving Center Requires a Very High Affinity Ca2+ SiteKalosaka K, Beck W, Brudvig G, Cheniae G. Coupling of the PS2 Reaction Center to the O2-Evolving Center Requires a Very High Affinity Ca2+ Site 1990, 721-724. DOI: 10.1007/978-94-009-0511-5_164.
  • Proton-coupled electron transfer in manganese complex [(bpy)2Mn(O)2Mn(bpy)2]3+Thorp H, Sarneski J, Brudvig G, Crabtree R. Proton-coupled electron transfer in manganese complex [(bpy)2Mn(O)2Mn(bpy)2]3+ Journal Of The American Chemical Society 1989, 111: 9249-9250. DOI: 10.1021/ja00208a029.
  • Modeling the oxygen evolving complex of photosystem II. Redox chemistry and ligand binding of biologically relevant manganese tetramersThorp H, Kulawiec R, Brudvig G, Crabtree R. Modeling the oxygen evolving complex of photosystem II. Redox chemistry and ligand binding of biologically relevant manganese tetramers Journal Of Inorganic Biochemistry 1989, 36: 226. DOI: 10.1016/0162-0134(89)84235-7.
  • Bioinorganic Chemistry of Manganese Related to Photosynthetic Oxygen EvolutionBrudvig G, Crabtree R. Bioinorganic Chemistry of Manganese Related to Photosynthetic Oxygen Evolution 1989, 99-142. DOI: 10.1002/9780470166383.ch2.
  • Oxidation of exogenous substrates by the O2-evolving center of photosystem II and related catalytic air oxidation of secondary alcohols via a tetranuclear manganese(IV) complex.Beck W, Sears J, Brudvig G, Kulawiec R, Crabtree* R. Oxidation of exogenous substrates by the O2-evolving center of photosystem II and related catalytic air oxidation of secondary alcohols via a tetranuclear manganese(IV) complex. Tetrahedron 1989, 45: 4903-4911. DOI: 10.1016/s0040-4020(01)85159-0.
  • CHAPTER 24 EPR SPECTROSCOPY OF MANGANESE ENZYMESBRUDVIG G. CHAPTER 24 EPR SPECTROSCOPY OF MANGANESE ENZYMES 1989, 839-863. DOI: 10.1016/b978-0-444-88050-5.50029-x.
  • ChemInform Abstract: Modeling the Oxygen‐Evolving Center of Photosystem II: Synthesis and Characterization of a Tetranuclear Manganese Carboxylate Complex.KULAWIEC R, CRABTREE R, BRUDVIG G, SCHULTE G. ChemInform Abstract: Modeling the Oxygen‐Evolving Center of Photosystem II: Synthesis and Characterization of a Tetranuclear Manganese Carboxylate Complex. ChemInform 1988, 19: no-no. DOI: 10.1002/chin.198832235.
  • Modeling the oxygen-evolving center of photosystem II: synthesis and characterization of a tetranuclear manganese carboxylate complexKulawiec R, Crabtree R, Brudvig G, Schulte G. Modeling the oxygen-evolving center of photosystem II: synthesis and characterization of a tetranuclear manganese carboxylate complex Inorganic Chemistry 1988, 27: 1309-1311. DOI: 10.1021/ic00281a001.
  • Resolution of the paradox of ammonia and hydroxylamine as substrate analogs for the water-oxidation reaction catalyzed by photosystem IIBeck W, Brudvig G. Resolution of the paradox of ammonia and hydroxylamine as substrate analogs for the water-oxidation reaction catalyzed by photosystem II Journal Of The American Chemical Society 1988, 110: 1517-1523. DOI: 10.1021/ja00213a026.
  • Electron Donation in Photosystem IIThompson L, Miller A, De Paula J, Brudvig G. Electron Donation in Photosystem II Israel Journal Of Chemistry 1988, 28: 121-128. DOI: 10.1002/ijch.198800021.
  • Studies of the manganese site of photosystem II by electron spin resonance spectroscopyde Paula J, Beck W, Miller A, Wilson R, Brudvig G. Studies of the manganese site of photosystem II by electron spin resonance spectroscopy Journal Of The Chemical Society Faraday Transactions 1 Physical Chemistry In Condensed Phases 1987, 83: 3635-3651. DOI: 10.1039/f19878303635.
  • Magnetic properties of manganese in the photosynthetic O2-evolving complex. 2. Evidence for a manganese tetramerDe Paula J, Beck W, Brudvig G. Magnetic properties of manganese in the photosynthetic O2-evolving complex. 2. Evidence for a manganese tetramer Journal Of The American Chemical Society 1986, 108: 4002-4009. DOI: 10.1021/ja00274a025.
  • Ammonia binds to the manganese site of the oxygen-evolving complex of photosystem II in the S2 stateBeck W, De Paula J, Brudvig G. Ammonia binds to the manganese site of the oxygen-evolving complex of photosystem II in the S2 state Journal Of The American Chemical Society 1986, 108: 4018-4022. DOI: 10.1021/ja00274a027.
  • A comparison of an exchange-coupled Fe(III)Cu(II) model with a Fe(IV) Model for the O2 binding site in oxidized cytochrome c oxidase via EPR spectral simulationsBrudvig G, Morse R, Chan S. A comparison of an exchange-coupled Fe(III)Cu(II) model with a Fe(IV) Model for the O2 binding site in oxidized cytochrome c oxidase via EPR spectral simulations Journal Of Magnetic Resonance (1969) 1986, 67: 189-201. DOI: 10.1016/0022-2364(86)90427-0.
  • Magnetic properties of manganese in the photosynthetic oxygen-evolving complexDe Paula J, Brudvig G. Magnetic properties of manganese in the photosynthetic oxygen-evolving complex Journal Of The American Chemical Society 1985, 107: 2643-2648. DOI: 10.1021/ja00295a016.
  • The effect of temperature on the formation and decay of the multiline EPR signal species associated with photosynthetic oxygen evolutionBrudvig G, Casey J, Sauer K. The effect of temperature on the formation and decay of the multiline EPR signal species associated with photosynthetic oxygen evolution Biochimica Et Biophysica Acta (BBA) - Bioenergetics 1983, 723: 366-371. DOI: 10.1016/0005-2728(83)90042-7.
  • PROPERTIES OF THE S2 STATE ASSOCIATED WITH O2 EVOLUTIONBrudvig G, Casey J, Sauer K. PROPERTIES OF THE S2 STATE ASSOCIATED WITH O2 EVOLUTION 1983, 159-164. DOI: 10.1016/b978-0-12-372360-4.50023-7.
  • The metal centers of cytochrome c oxidase: Structure and functionChan S, Blair D, Martin C, Wang H, Gelles J, Morgan J, Witt S, Birge R, Stevens T, Brudvig G. The metal centers of cytochrome c oxidase: Structure and function Inorganica Chimica Acta 1983, 79: 72-73. DOI: 10.1016/s0020-1693(00)95101-6.
  • The Structure of the Metal Centers in Cytochrome c OxidaseChan S, Martin C, Wang H, Brudvig G, Stevens T. The Structure of the Metal Centers in Cytochrome c Oxidase 1983, 313-328. DOI: 10.1007/978-94-009-7049-6_27.
  • The Nature and the Distribution of the Metal Centers in Cytochrome c OxidaseChan S, Brudvig G, Martin C, Stevens T. The Nature and the Distribution of the Metal Centers in Cytochrome c Oxidase 1982, 171-177. DOI: 10.1007/978-1-349-06491-5_24.
  • A MODEL FOR THE “VISIBLE” COPPER IN CYTOCHROME c OXIDASE11Supported in part by grant GM22432 from the National Institute of General Medical Sciences, U. S. Public Health Service and by BRSG Grant RR07003 awarded by the Biomedical Research Support Grant Program, Division of Research Resources, National Institutes of Health. Contribution No. 5836 from the Division of Chemistry and Chemical Engineering.Chan S, Bocian D, Brudvig G, Morse R, Stevens T. A MODEL FOR THE “VISIBLE” COPPER IN CYTOCHROME c OXIDASE11Supported in part by grant GM22432 from the National Institute of General Medical Sciences, U. S. Public Health Service and by BRSG Grant RR07003 awarded by the Biomedical Research Support Grant Program, Division of Research Resources, National Institutes of Health. Contribution No. 5836 from the Division of Chemistry and Chemical Engineering. 1978, 883-888. DOI: 10.1016/b978-0-12-225402-4.50017-6.