Skip to Main Content

Etienne Caron, PhD

Assistant Professor

Research Summary

In the post-GWAS era, the HLA has been established as the region of the genome that is associated with the greatest number of human diseases, ranging from cancer and infectious diseases to autoimmune and neurodegenerative disorders. HLA proteins present an extremely large and complex array of peptide fragments, which include both self and nonself peptides, collectively referred to as the human immunopeptidome. CD8+ and CD4+ T cells interact with the human immunopeptidome to influence disease susceptibility, progression, or resistance. Nevertheless, very little is known about it from a systems-level and population-scale perspective.

In this context, the overarching goal of the Caron Lab is to develop and apply mass spectrometry-based methods and systems immunology approaches to understand the generation, composition and dynamics of both the self and nonself immunopeptidome, as well as its interaction with CD8+ and CD4+ T cells, with the ultimate goal of innovating treatments and preventive strategies for a broad range of immune-related diseases. In collaboration with researchers and clinical investivators, immediate applications of their work focus on improving vaccine design and targeted immunotherapies against cancer, infectious diseases as well as autoimmune disorders.

To achieve this goal, the Caron Lab prioritizes the development and application of innovative experimental and computational approaches to create and analyze high-resolution digital maps of immunopeptidomes at population-scale from any cell type. Such technologies include microfluidics and antibody-independent techniques for rapid, efficient and specific isolation of HLA-bound peptides, single-molecule peptide sequencing technologies, methods for population-scale HLA typing, Liquid Chromatography coupled to tandem Mass Spectrometry (LC-MS/MS) techniques, and deep learning algorithms for quantitative immunopeptidomics.

In longer term, the Caron Lab also aims to apply their technologies and knowledge to unravel how the immune system operates in outer space, positioning humanity to thrive both on Earth and venture into uncharted territories beyond our planet.

Coauthors

Research Interests

Autoimmune Diseases; HLA Antigens; Immunotherapy; Major Histocompatibility Complex; Mass Spectrometry; Antigen Presentation; Computational Biology; Cancer Vaccines; Neurodegenerative Diseases; Proteomics; Microfluidics; Systems Biology; Infectious Disease Medicine; Single-Cell Analysis; Spatial Analysis; Space Research

Public Health Interests

Bioinformatics; Biomarkers; Cancer; Chronic Diseases; Immunology; Infectious Diseases; Vaccines; Child/Adolescent Health

Research Image

Selected Publications