Andrew Xiao, PhD
Research & Publications
Biography
News
Locations
Research Summary
Laboratory of Chromatin Structure and Inheritance-The ultimate goal of this laboratory is the understanding of how genetic information is processed and extracted from mammalian genomes. We mainly focused on a mechanism known as “Epigenetics”, i.e. regulating expression of genes without changing their DNA sequences. Epigenetics is closely linked to development and embryonic stem cells (ES cells) as distinct groups of genes are dynamically expressed or silenced during embryonic development and ES cells, while the DNA sequences of genes are essentially the same as adult tissues and cells.Therefore, embryonic stem cells serve as our major experimental system.While we have been discovering several unexpected, stem cell-specific mechanisms recently, such as N6-mA, we are also witnessing the emerging theme that the novel mechanisms can be “hijacked” by human diseases. As they are rarely utilized by normal adult tissues and cells, these mechanisms serve as perfect therapeutic targets. Lab website: https://www.xiaolabatyale.org/
Specialized Terms: Chromatin biology; Histone variants; Modifications and chromatin remodeling complexes; Cellular reprogramming (iPS) and stem cell biology; Mammalian neural crest cell; Mammalian DNA damage response
Extensive Research Description
The essential components of epigenetics- The basic unit of our genome is nucleosomes, a complex in which ~146 bases of the DNA molecule wrap around a group of proteins called histones.Histones are among the most conserved proteins during evolution; only a few differences in their composition (amino acid residues) are found among yeast and human histones.
Intriguingly, higher eukaryotic genomes, especially the mammalian, contain specialized histones, known as the histone variants, which are often only presented in a very small portion of the genome (1-5%) and yet play critical roles in various biological process, ranging from differentiation/development to DNA repair/replication. A major research interest in my lab is to understand how the deposition and functions of histone variants are regulated.A recent work from my lab discovered unexpected roles of a histone variant in determination of the quality of cell induced pluripotent stem (iPS) cells (Wu et al. 2014).
Chemical modifications on histones is a very important aspect of epigenetic regulation; more than a hundred such modifications have been discovered to date. On the other hand, the dogma stated that 5-methyl-Cytidine (5mC) and its derivatives is the only form of chemical modification on mammalian DNA.Other modifications, such as N6-methyl-adenine (N6-mA) had been long thought to only exist in bacteria, viruses and a limited number of simple eukaryotes. Our most recent discovery of N6-mA “puts paid to” this dogma (Nature news and view). This paradigm-shifting discovery opens up a brand new research direction in mammalian epigenetics, which we are excited to explore (Wu et al. 2016).
DNA secondary structures induced by superhelical tension during replication and transcription is a long-standing observation. Our recent discovery of a novel role of N6-mA in regulating DNA secondary structures (Li et al., 2020) open a new research direction. We have elucidated the molecular pathways of this regulation and revealed its function in early embryogenesis.
Last but not least, we are interested in endogenous retrotransposons in mammalian genomes.These remnants of the ancient viruses once invaded our genome and later became domesticated. Although long considered as “junk” DNA, they have received lots of attention recently as they play surprising roles in ES cells and early embryogenesis.First, they are considered as a driving force in genome evolution; as Barbara McClintock pointed out several decades ago, they are the key factor for an organism to develop new traits under environmental stress. Second, recent studies have implicated them in early development, especially at morula stage embryos (2-cell to 16-cell). Third, their frequent (50%) remobilization (de novo jumping) in human carcinomas (breast, prostate, colon etc) has been implicated in tumor progression. Therefore, we are striving to understand the epigenetic mechanisms for regulating retrotransposon functions.
Our interests in stem cells and cellular reprogramming- Embryonic stem cells, which can self-renew endlessly and differentiate into every cell type in the human body, contain the blueprints of our existence. They hold the promise of curing any disease or condition caused by tissue loss or aging, including Alzheimer’s, Huntington’s and blood cell loss from chemotherapy.Due to ethical concerns, however, the availability of embryonic stem cells is highly limited. In addition, given the diversity of human populations, transplanting cells derived from a few common lines of embryonic stem cells may lead to immune rejection and other complications in a patient population.The recent advent of cellular reprogramming technology, a breakthrough that was recognized with the Noble Prize in 2012, provides an attractive solution to these issues.With the addition of a few genes, differentiated cells (such as skin or hair follicle cells) can be “reprogrammed” to become like embryonic stem cells and then further induced into cells of interest. This means that if cellular reprogramming becomes medically viable, a patient with Alzheimer’s disease can be cured by cells derived from her own skin or hair, which would be free from the risk of immune rejection. Although promising, current cellular reprogramming technology needs significant improvements for future clinical applications to become feasible. A major gateway issue is the uneven quality among reprogrammed cell lines: over 95% of reprogrammed cells do not behave like embryonic stem cells.Therefore, understanding the mechanisms controlling the quality of reprogrammed cells and ultimately developing novel methods to improve their quality is not only a fundamental question for those of us engaged in basic scientific research, but of great importance to regenerative medicine.Our laboratory has recently shed the first light on this intriguing “quality control” issue by demonstrating the surprising role of histone variant in determination of the cell fate stability of iPS cells.
Moreover, since the epigenetic landscape of stem cells are drastically different from that of differentiated cells, we also use stem cells as a valuable source in search of novel epigenetic mechanism. One good example is the discovery of N6-mA. Although rare in normal adult tissues and cells, these mechanisms are often “hijacked” by human diseases, so these mechanisms serve as perfect therapeutic targets.
Coauthors
Research Interests
Chromatin; DNA Damage; Genetics; Histones; Stem Cells; Cellular Reprogramming
Selected Publications
- Taming the transposon: H3K9me3 turns foe to friend in human developmentChitrakar A, Noon M, Xiao AZ. Taming the transposon: H3K9me3 turns foe to friend in human development Cell Stem Cell 2022, 29: 1009-1010. PMID: 35803220, PMCID: PMC9484580, DOI: 10.1016/j.stem.2022.06.010.
- ALKBH5 Modulates Hematopoietic Stem and Progenitor Cell Energy Metabolism through m 6a Modification-Mediated RNA StabilityGao Y, Zimmer J, Vasic R, Liu C, Gbyli R, Zheng S, Patel A, LIU W, Nelakanti R, Song Y, Biancon G, Xiao A, Slavoff S, Simon M, Flavell R, Tebaldi T, Li H, Halene S. ALKBH5 Modulates Hematopoietic Stem and Progenitor Cell Energy Metabolism through m 6a Modification-Mediated RNA Stability Blood 2021, 138: 298-298. DOI: 10.1182/blood-2021-146049.
- A New Link to Primate Heart DevelopmentNelakanti RV, Xiao AZ. A New Link to Primate Heart Development Developmental Cell 2020, 54: 685-686. PMID: 32991832, DOI: 10.1016/j.devcel.2020.09.009.
- N6-methyladenine in DNA antagonizes SATB1 in early developmentLi Z, Zhao S, Nelakanti RV, Lin K, Wu TP, Alderman MH, Guo C, Wang P, Zhang M, Min W, Jiang Z, Wang Y, Li H, Xiao AZ. N6-methyladenine in DNA antagonizes SATB1 in early development Nature 2020, 583: 625-630. PMID: 32669713, PMCID: PMC8596487, DOI: 10.1038/s41586-020-2500-9.
- m6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic DevelopmentGao Y, Vasic R, Song Y, Teng R, Liu C, Gbyli R, Biancon G, Nelakanti R, Lobben K, Kudo E, Liu W, Ardasheva A, Fu X, Wang X, Joshi P, Lee V, Dura B, Viero G, Iwasaki A, Fan R, Xiao A, Flavell RA, Li HB, Tebaldi T, Halene S. m6A Modification Prevents Formation of Endogenous Double-Stranded RNAs and Deleterious Innate Immune Responses during Hematopoietic Development Immunity 2020, 52: 1007-1021.e8. PMID: 32497523, PMCID: PMC7408742, DOI: 10.1016/j.immuni.2020.05.003.
- RNA-based CRISPR-Mediated Loss-of-Function Mutagenesis in Human Pluripotent Stem CellsLeung AW, Broton C, Bogacheva MS, Xiao AZ, Garcia-Castro MI, Lou YR. RNA-based CRISPR-Mediated Loss-of-Function Mutagenesis in Human Pluripotent Stem Cells Journal Of Molecular Biology 2020, 432: 3956-3964. PMID: 32339532, DOI: 10.1016/j.jmb.2020.04.017.
- Mammalian ALKBH1 serves as an N6-mA demethylase of unpairing DNAZhang M, Yang S, Nelakanti R, Zhao W, Liu G, Li Z, Liu X, Wu T, Xiao A, Li H. Mammalian ALKBH1 serves as an N6-mA demethylase of unpairing DNA Cell Research 2020, 30: 197-210. PMID: 32051560, PMCID: PMC7054317, DOI: 10.1038/s41422-019-0237-5.
- Loss of METTL3 Mediated m6A RNA Modification Results in Double-Stranded RNA Induced Innate Immune Response and Hematopoietic FailureGao Y, Vasic R, Song Y, Teng R, Gbyli R, Biancon G, Nelakanti R, Kudo E, Liu W, Ardasheva A, Fu X, Wang X, Joshi P, Dura B, Lee V, Viero G, Iwasaki A, Fan R, Xiao A, Flavell R, Li H, Tebaldi T, Halene S. Loss of METTL3 Mediated m6A RNA Modification Results in Double-Stranded RNA Induced Innate Immune Response and Hematopoietic Failure Blood 2019, 134: 450-450. DOI: 10.1182/blood-2019-130442.
- N(6)-Methyladenine in eukaryotesAlderman MH, Xiao AZ. N(6)-Methyladenine in eukaryotes Cellular And Molecular Life Sciences 2019, 76: 2957-2966. PMID: 31143960, PMCID: PMC6857450, DOI: 10.1007/s00018-019-03146-w.
- Mettl3 Mediated m6A Modification Is Essential in Fetal HematopoiesisGao Y, Vasic R, Tebaldi T, Song Y, Teng R, Joshi P, Viero G, Xiao A, Batista P, Li H, Flavell R, Halene S. Mettl3 Mediated m6A Modification Is Essential in Fetal Hematopoiesis Blood 2018, 132: 3825-3825. DOI: 10.1182/blood-2018-99-119699.
- N 6 -methyladenine DNA Modification in GlioblastomaXie Q, Wu TP, Gimple RC, Li Z, Prager BC, Wu Q, Yu Y, Wang P, Wang Y, Gorkin DU, Zhang C, Dowiak AV, Lin K, Zeng C, Sui Y, Kim LJY, Miller TE, Jiang L, Lee-Poturalski C, Huang Z, Fang X, Zhai K, Mack SC, Sander M, Bao S, Kerstetter-Fogle AE, Sloan AE, Xiao AZ, Rich JN. N 6 -methyladenine DNA Modification in Glioblastoma Cell 2018, 175: 1228-1243.e20. PMID: 30392959, PMCID: PMC6433469, DOI: 10.1016/j.cell.2018.10.006.
- Mapping and characterizing N6-methyladenine in eukaryotic genomes using single-molecule real-time sequencingZhu S, Beaulaurier J, Deikus G, Wu TP, Strahl M, Hao Z, Luo G, Gregory JA, Chess A, He C, Xiao A, Sebra R, Schadt EE, Fang G. Mapping and characterizing N6-methyladenine in eukaryotic genomes using single-molecule real-time sequencing Genome Research 2018, 28: 1067-1078. PMID: 29764913, PMCID: PMC6028124, DOI: 10.1101/gr.231068.117.
- Quality control towards the application of induced pluripotent stem cellsLin K, Xiao AZ. Quality control towards the application of induced pluripotent stem cells Current Opinion In Genetics & Development 2017, 46: 164-169. PMID: 28823985, DOI: 10.1016/j.gde.2017.07.006.
- Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cellsChoi J, Huebner AJ, Clement K, Walsh RM, Savol A, Lin K, Gu H, Di Stefano B, Brumbaugh J, Kim SY, Sharif J, Rose CM, Mohammad A, Odajima J, Charron J, Shioda T, Gnirke A, Gygi S, Koseki H, Sadreyev RI, Xiao A, Meissner A, Hochedlinger K. Prolonged Mek1/2 suppression impairs the developmental potential of embryonic stem cells Nature 2017, 548: 219-223. PMID: 28746311, PMCID: PMC5905676, DOI: 10.1038/nature23274.
- DNA methylation on N6-adenine in mammalian embryonic stem cellsWu TP, Wang T, Seetin MG, Lai Y, Zhu S, Lin K, Liu Y, Byrum SD, Mackintosh SG, Zhong M, Tackett A, Wang G, Hon LS, Fang G, Swenberg JA, Xiao AZ. DNA methylation on N6-adenine in mammalian embryonic stem cells Nature 2016, 532: 329-333. PMID: 27027282, PMCID: PMC4977844, DOI: 10.1038/nature17640.
- Extensive Nuclear Reprogramming Underlies Lineage Conversion into Functional Trophoblast Stem-like CellsBenchetrit H, Herman S, van Wietmarschen N, Wu T, Makedonski K, Maoz N, Tov N, Stave D, Lasry R, Zayat V, Xiao A, Lansdorp PM, Sebban S, Buganim Y. Extensive Nuclear Reprogramming Underlies Lineage Conversion into Functional Trophoblast Stem-like Cells Cell Stem Cell 2015, 17: 543-556. PMID: 26412562, DOI: 10.1016/j.stem.2015.08.006.
- Adaption by Rewiring Epigenetic LandscapesLiu Y, Xiao A. Adaption by Rewiring Epigenetic Landscapes Cell Stem Cell 2015, 17: 249-250. PMID: 26340521, PMCID: PMC4710369, DOI: 10.1016/j.stem.2015.08.015.
- Roles for Histone Acetylation in Regulation of Telomere Elongation and Two‐cell State in Mouse ES CellsDan J, Yang J, Liu Y, Xiao A, Liu L. Roles for Histone Acetylation in Regulation of Telomere Elongation and Two‐cell State in Mouse ES Cells Journal Of Cellular Physiology 2015, 230: 2337-2344. PMID: 25752831, PMCID: PMC4711819, DOI: 10.1002/jcp.24980.
- Histone Variant H2A.X Deposition Pattern Serves as a Functional Epigenetic Mark for Distinguishing the Developmental Potentials of iPSCsWu T, Liu Y, Wen D, Tseng Z, Tahmasian M, Zhong M, Rafii S, Stadtfeld M, Hochedlinger K, Xiao A. Histone Variant H2A.X Deposition Pattern Serves as a Functional Epigenetic Mark for Distinguishing the Developmental Potentials of iPSCs Cell Stem Cell 2014, 15: 281-294. PMID: 25192463, DOI: 10.1016/j.stem.2014.06.004.
- The Developmental Potential of iPSCs Is Greatly Influenced by Reprogramming Factor SelectionBuganim Y, Markoulaki S, van Wietmarschen N, Hoke H, Wu T, Ganz K, Akhtar-Zaidi B, He Y, Abraham BJ, Porubsky D, Kulenkampff E, Faddah DA, Shi L, Gao Q, Sarkar S, Cohen M, Goldmann J, Nery JR, Schultz MD, Ecker JR, Xiao A, Young RA, Lansdorp PM, Jaenisch R. The Developmental Potential of iPSCs Is Greatly Influenced by Reprogramming Factor Selection Cell Stem Cell 2014, 15: 295-309. PMID: 25192464, PMCID: PMC4170792, DOI: 10.1016/j.stem.2014.07.003.
- Using Native Chromatin Immunoprecipitation to Interrogate Histone Variant Protein Deposition in Embryonic Stem CellsTseng Z, Wu T, Liu Y, Zhong M, Xiao A. Using Native Chromatin Immunoprecipitation to Interrogate Histone Variant Protein Deposition in Embryonic Stem Cells 2014, 1176: 11-22. PMID: 25030915, DOI: 10.1007/978-1-4939-0992-6_2.
- Rif1 Maintains Telomere Length Homeostasis of ESCs by Mediating Heterochromatin SilencingDan J, Liu Y, Liu N, Chiourea M, Okuka M, Wu T, Ye X, Mou C, Wang L, Wang L, Yin Y, Yuan J, Zuo B, Wang F, Li Z, Pan X, Yin Z, Chen L, Keefe DL, Gagos S, Xiao A, Liu L. Rif1 Maintains Telomere Length Homeostasis of ESCs by Mediating Heterochromatin Silencing Developmental Cell 2014, 29: 7-19. PMID: 24735877, PMCID: PMC4720134, DOI: 10.1016/j.devcel.2014.03.004.
- Epigenetic regulation in neural crest development.Liu Y, Xiao A. Epigenetic regulation in neural crest development. Birth Defects Research. Part A, Clinical And Molecular Teratology 2011, 91: 788-96. PMID: 21618405, DOI: 10.1002/bdra.20797.
- Dephosphorylation of the C-terminal Tyrosyl Residue of the DNA Damage-related Histone H2A.X Is Mediated by the Protein Phosphatase Eyes Absent*Krishnan N, Jeong DG, Jung SK, Ryu SE, Xiao A, Allis CD, Kim SJ, Tonks NK. Dephosphorylation of the C-terminal Tyrosyl Residue of the DNA Damage-related Histone H2A.X Is Mediated by the Protein Phosphatase Eyes Absent* Journal Of Biological Chemistry 2009, 284: 16066-16070. PMID: 19351884, PMCID: PMC2713548, DOI: 10.1074/jbc.c900032200.
- A distinct H2A.X isoform is enriched in Xenopus laevis eggs and early embryos and is phosphorylated in the absence of a checkpointShechter D, Chitta RK, Xiao A, Shabanowitz J, Hunt DF, Allis CD. A distinct H2A.X isoform is enriched in Xenopus laevis eggs and early embryos and is phosphorylated in the absence of a checkpoint Proceedings Of The National Academy Of Sciences Of The United States Of America 2009, 106: 749-754. PMID: 19131518, PMCID: PMC2630098, DOI: 10.1073/pnas.0812207106.
- WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activityXiao A, Li H, Shechter D, Ahn SH, Fabrizio LA, Erdjument-Bromage H, Ishibe-Murakami S, Wang B, Tempst P, Hofmann K, Patel DJ, Elledge SJ, Allis CD. WSTF regulates the H2A.X DNA damage response via a novel tyrosine kinase activity Nature 2008, 457: 57-62. PMID: 19092802, PMCID: PMC2854499, DOI: 10.1038/nature07668.
- Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activityZhao X, Jankovic V, Gural A, Huang G, Pardanani A, Menendez S, Zhang J, Dunne R, Xiao A, Erdjument-Bromage H, Allis CD, Tempst P, Nimer SD. Methylation of RUNX1 by PRMT1 abrogates SIN3A binding and potentiates its transcriptional activity Genes & Development 2008, 22: 640-653. PMID: 18316480, PMCID: PMC2259033, DOI: 10.1101/gad.1632608.
- Linking the epigenetic 'language' of covalent histone modifications to cancer.Hake S, Xiao A, Allis C. Linking the epigenetic 'language' of covalent histone modifications to cancer. British Journal Of Cancer 2007, 96 Suppl: r31-9. PMID: 17393583.
- Somatic induction of Pten loss in a preclinical astrocytoma model reveals major roles in disease progression and avenues for target discovery and validation.Xiao A, Yin C, Yang C, Di Cristofano A, Pandolfi PP, Van Dyke T. Somatic induction of Pten loss in a preclinical astrocytoma model reveals major roles in disease progression and avenues for target discovery and validation. Cancer Research 2005, 65: 5172-80. PMID: 15958561, DOI: 10.1158/0008-5472.CAN-04-3902.
- Arginine Methylation of Runx1 Regulates Its Biological and Transcriptional Activities.Zhao X, Parkanani A, Zhang J, Dunne R, Xiao A, Allis C, Nimer S. Arginine Methylation of Runx1 Regulates Its Biological and Transcriptional Activities. Blood 2004, 104: 2041-2041. DOI: 10.1182/blood.v104.11.2041.2041.
- Linking the epigenetic ‘language’ of covalent histone modifications to cancerHake SB, Xiao A, Allis CD. Linking the epigenetic ‘language’ of covalent histone modifications to cancer British Journal Of Cancer 2004, 90: 761-769. PMID: 14970850, PMCID: PMC2410168, DOI: 10.1038/sj.bjc.6601575.
- Pten dose dictates cancer progression in the prostate.Trotman LC, Niki M, Dotan ZA, Koutcher JA, Di Cristofano A, Xiao A, Khoo AS, Roy-Burman P, Greenberg NM, Van Dyke T, Cordon-Cardo C, Pandolfi PP. Pten dose dictates cancer progression in the prostate. PLoS Biology 2003, 1: E59. PMID: 14691534, PMCID: PMC270016, DOI: 10.1371/journal.pbio.0000059.
- Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation.Xiao A, Wu H, Pandolfi PP, Louis DN, Van Dyke T. Astrocyte inactivation of the pRb pathway predisposes mice to malignant astrocytoma development that is accelerated by PTEN mutation. Cancer Cell 2002, 1: 157-68. PMID: 12086874, DOI: 10.1016/s1535-6108(02)00029-6.