Sickle cell disease is the most common genetic blood disorder in the United States and is vastly understudied. The disease is caused by a single mutation in the gene encoding beta-globin, a critical protein in the hemoglobin oxygen carrying protein in red blood cells. The abnormal hemoglobin protein results in damage to and destruction of red blood cells, painful crises, and serious outcomes such as strokes. When the sickle-shaped red blood cells cause blood vessel damage and impaired blood flow, sickle cell disease also creates a chronic inflammatory state, and causes damage to the spleen, an important immune system organ. Patients with sickle cell disease have substantial morbidity and mortality from infections as a result. The health implications are significant: studies show that individuals with sickle cell disease live approximately two decades shorter. The disease is mostly seen in Black individuals, who also are more likely to have disadvantaged access to healthcare.
“The overall goal of our project is to create data to learn more about the immunobiology of sickle cell disease and increase the protection provided to individuals by vaccines against infectious diseases,” says Inci Yildirim, MD, PhD, associate professor of pediatrics (infectious diseases) and of public health (epidemiology of microbial diseases).
Montgomery and Yildirim will work together to profile the baseline immune status of patients with sickle cell disease and changes following from treatment and long-term transfusions. Working with Farzana Pashankar, MD, director of the Pediatric Sickle Cell Program, Cece Calhoun, MD, assistant professor of medicine (hematology), and Lakshmanan Krishnamurti, MD, chief of pediatric hematology, oncology, and bone marrow transplant, the team will investigate immune responses to pneumococcal vaccines and compare the participants to a control group that includes family members without the disease. The investigators also plan to study whether individuals respond differently to the influenza vaccine that contains the adjuvant given to older adults. These vaccines are currently not authorized for pediatric or young adult patients, even if they have sickle cell disease.
Montgomery and Yildirim hope their team’s project will allow them to develop a signature of a patient’s inflammatory state and perhaps predict disease outcome. In particular, they hope this research will help develop better vaccines for those with the disease. “I’m excited about creating data for a disease that has not been well studied, but is very common and has significant implications,” says Yildirim. “We’re talking about two decades of shorter life as a result of this disease even in developed countries with state of the art care. Anything that can be done to improve outcomes—better treatments, more effective vaccines—would be quite impactful.”
The systems-level profiling data generated as part of these three projects will be analyzed and integrated by a data management and analysis core led by Steven Kleinstein, PhD, professor of pathology and of immunobiology, and co-director of the Program in Computational Biology and Bioinformatics. Additional Yale faculty collaborating in Core resources include Heather Allore, PhD, professor of medicine (geriatrics), Leying Guan, PhD, assistant professor of biostatistics, and Rong Fan, PhD, professor of biomedical engineering and pathology. According to Kleinstein, “Comparative analysis across these three projects will inform definitions of a broad signature of effective vaccine responses and reveal molecular mechanisms that account for the differential dynamics in these vulnerable populations.” Kleinstein also leads the national coordinating center for HIPC (awarded jointly to Yale and La Jolla Institute) that will facilitate analysis, visualization and integration of data across HIPC centers nationally.