Ronald Breaker, PhD, BS
Research & Publications
Biography
News
Research Summary
Nucleic acids carry out numerous tasks in organisms that range from the
long-term storage and transfer of genetic information to molecular recognition
and biological catalysis. It is now apparent that both RNA and DNA have a
tremendous untapped potential for biochemical function that can be accessed
using molecular engineering strategies. Existing ribozymes can be altered
by using test tube evolution, and entirely new enzymes made of RNA or DNA
can be isolated from pools of trillions of sequence variants. In addition,
we are finding that some types of functional RNAs though to be extinct are
present in modern cells where they perform fundamental biochemical tasks.
For example, we are discovering new examples of “riboswitches” that
sense metabolites and control gene expression. We will continue to explore
the functional potential of RNAs and DNAs that have been isolated from natural
sources and that have been created outside the confines of cells.
Extensive Research Description
The Breaker laboratory uses a variety of approaches to explore the
fundamental properties of nucleic acids. For example, the laboratory
develops new techniques for in vitro selection to create new functional
RNAs and DNAs. In vitro selection is patterned after natural Darwinian
evolution, but where "survival-of-the-fittest" is played out at the
molecular level in the absence of living cells. Up to 100 trillion
different molecules can be subjected to this test-tube evolution
process to isolate or engineer molecules that perform tasks such as
catalysis and molecular sensing.
Previous molecular engineering projects have provided evidence that both RNA and DNA have substantial untapped potential for sophisticated biochemical function. For example, we have produced a variety of new DNA enzymes, some that operate under cell-like conditions and perform reactions that mimic important biochemical transformations. In addition, we have generated dozens of examples of RNAs that function as designer molecular switches that respond to specific small molecules. These findings demonstrate that the primary roles of RNA and DNA in nature might be greater than currently appreciated, and suggests that the function of nucleic acids could be expanded via molecular engineering.
Inspired by these molecular engineering demonstrations, we have more
recently begun to search for novel types of non-coding RNAs that
perform undiscovered catalytic or molecular sensing tasks in cells. We
have identified numerous classes of "riboswitches", which are
metabolite-binding mRNA domains that control genes responsible for
biosynthesis of essential compounds. Among the first dozen riboswitches
classes identified are representatives that sense coenzymes,
nucleobases, amino acids or sugars. Some riboswitch classes exhibit
complex biochemical behaviors including ribozyme activity, cooperative
ligand binding, and logic gate function. In addition, we have
identified other non-coding RNAs that are not riboswitches, but whose
biological functions remain to be established. We will continue to use
bioinformatics, genetics, and biochemistry techniques to discover new
types of non-coding RNAs and to establish the functions of these
complex-folded nucleic acids.The Breaker laboratory is working to discover novel non-coding RNAs in all three domains of life. Bioinformatics systems are used to identify candidate structured RNAs, and the functions of these new-found RNAs are validated using genetic and biochemical techniques.
In addition, the Breaker laboratory is exploring the functional capability and utility of nucleic acids when engineered outside the confines of cells.
Research Interests
Bacteria; Biochemistry; Biology; Biotechnology; Fungi; Genetics, Microbial; Microbiology; Molecular Biology; Computational Biology; Genomics; Metabolomics
Selected Publications
- Discovering riboswitches: the past and the futureKavita K, Breaker RR. Discovering riboswitches: the past and the future. Trends In Biochemical Sciences 2022, 48: 119-141. PMID: 36150954, PMCID: PMC10043782, DOI: 10.1016/j.tibs.2022.08.009.
- Na+ riboswitches regulate genes for diverse physiological processes in bacteriaWhite N, Sadeeshkumar H, Sun A, Sudarsan N, Breaker RR. Na+ riboswitches regulate genes for diverse physiological processes in bacteria. Nature Chemical Biology 2022, 18: 878-885. PMID: 35879547, PMCID: PMC9337991, DOI: 10.1038/s41589-022-01086-4.
- Natural circularly permuted group II introns in bacteria produce RNA circlesRoth A, Weinberg Z, Vanderschuren K, Murdock MH, Breaker RR. Natural circularly permuted group II introns in bacteria produce RNA circles. IScience 2021, 24: 103431. PMID: 34901790, PMCID: PMC8637638, DOI: 10.1016/j.isci.2021.103431.
- Structure of a bacterial OapB protein with its OLE RNA target gives insights into the architecture of the OLE ribonucleoprotein complexYang Y, Harris KA, Widner DL, Breaker RR. Structure of a bacterial OapB protein with its OLE RNA target gives insights into the architecture of the OLE ribonucleoprotein complex. Proceedings Of The National Academy Of Sciences Of The United States Of America 2021, 118: e2020393118. PMID: 33619097, PMCID: PMC7936274, DOI: 10.1073/pnas.2020393118.
- A conserved uORF in the ilvBNC mRNA of Corynebacterium species regulates ilv operon expressionNarunsky A, Kavita K, Panchapakesan S, Fris M, Breaker R. A conserved uORF in the ilvBNC mRNA of Corynebacterium species regulates ilv operon expression. Microbial Genomics 2023, 9: mgen001019. PMID: 37233150, PMCID: PMC10272879, DOI: 10.1099/mgen.0.001019.
- RiboswitchesSalvail H, Breaker R. Riboswitches. Current Biology 2023, 33: r343-r348. PMID: 37160088, DOI: 10.1016/j.cub.2023.03.069.
- Screening for small molecule inhibitors of SAH nucleosidase using an SAH riboswitchSadeeshkumar H, Balaji A, Sutherland A, Mootien S, Anthony K, Breaker R. Screening for small molecule inhibitors of SAH nucleosidase using an SAH riboswitch. Analytical Biochemistry 2023, 666: 115047. PMID: 36682579, DOI: 10.1016/j.ab.2023.115047.
- Exploiting natural riboswitches for aptamer engineering and validationMohsen M, Midy M, Balaji A, Breaker R. Exploiting natural riboswitches for aptamer engineering and validation. Nucleic Acids Research 2023, 51: 966-981. PMID: 36617976, PMCID: PMC9881172, DOI: 10.1093/nar/gkac1218.
- Lithium-sensing riboswitch classes regulate expression of bacterial cation transporter genesWhite N, Sadeeshkumar H, Sun A, Sudarsan N, Breaker R. Lithium-sensing riboswitch classes regulate expression of bacterial cation transporter genes. Scientific Reports 2022, 12: 19145. PMID: 36352003, PMCID: PMC9646797, DOI: 10.1038/s41598-022-20695-6.
- Ornate, large, extremophilic (OLE) RNA forms a kink turn necessary for OapC protein recognition and RNA functionLyon S, Harris K, Odzer N, Wilkins S, Breaker R. Ornate, large, extremophilic (OLE) RNA forms a kink turn necessary for OapC protein recognition and RNA function. Journal Of Biological Chemistry 2022, 298: 102674. PMID: 36336078, PMCID: PMC9723947, DOI: 10.1016/j.jbc.2022.102674.
- Ribozyme Discovery in BacteriaRoth A, Breaker R. Ribozyme Discovery in Bacteria. 2021, 281-302. DOI: 10.1002/9783527814527.ch10.
- Genome‐wide Discovery of Rare Riboswitches in BacteriaArachchilage G, Atilho R, Stav S, Higgs G, Breaker R. Genome‐wide Discovery of Rare Riboswitches in Bacteria. The FASEB Journal 2019, 33: 778.8-778.8. DOI: 10.1096/fasebj.2019.33.1_supplement.778.8.
- Large Noncoding RNAs in BacteriaHarris K, Breaker R. Large Noncoding RNAs in Bacteria. 2018, 515-526. DOI: 10.1128/9781683670247.ch30.
- PROSPECTS FOR RIBOZYME DISCOVERY AND ANALYSISBREAKER R. PROSPECTS FOR RIBOZYME DISCOVERY AND ANALYSIS. 2018, 349-356. DOI: 10.1142/9789813237179_0049.
- High Throughput Validation of Orphan Riboswitch CandidatesArachchilage G, Sherlock M, White N, Panchapakesan S, Breaker R. High Throughput Validation of Orphan Riboswitch Candidates. The FASEB Journal 2018, 32: lb18-lb18. DOI: 10.1096/fasebj.2018.32.1_supplement.lb18.
- Improved genetic transformation methods for the model alkaliphile Bacillus halodurans C‐125Wallace J, Breaker R. Improved genetic transformation methods for the model alkaliphile Bacillus halodurans C‐125. Letters In Applied Microbiology 2011, 52: 430-432. PMID: 21362000, PMCID: PMC5315388, DOI: 10.1111/j.1472-765x.2011.03017.x.
- ChemInform Abstract: In vitro Selection of Catalytic PolynucleotidesBREAKER R. ChemInform Abstract: In vitro Selection of Catalytic Polynucleotides. ChemInform 2010, 28: no-no. DOI: 10.1002/chin.199727301.
- Bacterial Riboswitch Discovery and AnalysisAmes T, Breaker R. Bacterial Riboswitch Discovery and Analysis. 2010, 433-454. DOI: 10.1002/9780470664001.ch20.
- The large, noncoding OLE RNA is associated with membrane biochemistryBlock K, Wallace J, Puerta‐Fernandez E, Breaker R. The large, noncoding OLE RNA is associated with membrane biochemistry. The FASEB Journal 2010, 24: 493.2-493.2. DOI: 10.1096/fasebj.24.1_supplement.493.2.
- Riboswitches That Sense Cyclic Di‐GMPLee E, Sudarsan N, Breaker R. Riboswitches That Sense Cyclic Di‐GMP. 2010, 215-229. DOI: 10.1128/9781555816667.ch15.
- RNA Second Messengers and Riboswitches: Relics from the RNA World?Breaker R. RNA Second Messengers and Riboswitches: Relics from the RNA World? Microbe Magazine 2010, 5: 13-20. DOI: 10.1128/microbe.5.13.1.
- Aptamers in Bioanalysis . Edited by Marco Mascini. Hoboken (New Jersey): Wiley. $125.00. xvii + 313 p. + 12 pl.; ill.; index. 978‐0‐470‐14830‐3. 2009.Breaker R. Aptamers in Bioanalysis . Edited by Marco Mascini. Hoboken (New Jersey): Wiley. $125.00. xvii + 313 p. + 12 pl.; ill.; index. 978‐0‐470‐14830‐3. 2009. The Quarterly Review Of Biology 2009, 84: 418-419. DOI: 10.1086/648164.
- Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitchesLink K, Breaker R. Engineering ligand-responsive gene-control elements: lessons learned from natural riboswitches. Gene Therapy 2009, 16: 1189-1201. PMID: 19587710, PMCID: PMC5325117, DOI: 10.1038/gt.2009.81.
- A plant 5S rRNA mimic regulates alternative splicing of transcription factor IIIA pre‐mRNAsHammond M, Wachter A, Breaker R. A plant 5S rRNA mimic regulates alternative splicing of transcription factor IIIA pre‐mRNAs. The FASEB Journal 2009, 23: 665.4-665.4. DOI: 10.1096/fasebj.23.1_supplement.665.4.
- In Vitro Selection and Characterization of Cellulose-Binding RNA Aptamers Using isothermal AmplificationBoese B, Corbino K, Breaker R. In Vitro Selection and Characterization of Cellulose-Binding RNA Aptamers Using isothermal Amplification. Nucleosides Nucleotides & Nucleic Acids 2008, 27: 949-966. PMID: 18696364, PMCID: PMC5360192, DOI: 10.1080/15257770802257903.
- Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMPSudarsan N, Lee E, Weinberg Z, Moy R, Kim J, Link K, Breaker R. Riboswitches in Eubacteria Sense the Second Messenger Cyclic Di-GMP. Science 2008, 321: 411-413. PMID: 18635805, PMCID: PMC5304454, DOI: 10.1126/science.1159519.
- Gene Regulation by RiboswitchesBreaker R. Gene Regulation by Riboswitches. The FASEB Journal 2008, 22: 97.3-97.3. DOI: 10.1096/fasebj.22.1_supplement.97.3.
- Riboswitches as new antibiotics targetsBlount K, Breaker R. Riboswitches as new antibiotics targets. The FASEB Journal 2008, 22: 264.3-264.3. DOI: 10.1096/fasebj.22.1_supplement.264.3.
- FINDING NON-CODING RNAs THROUGH GENOME-SCALE CLUSTERINGTSENG H, WEINBERG Z, GORE J, BREAKER R, RUZZO W. FINDING NON-CODING RNAs THROUGH GENOME-SCALE CLUSTERING. 2007, 199-209. DOI: 10.1142/9781848161092_0022.
- Chapter 8Link K, Breaker R. Chapter 8. 2007, 134-152. DOI: 10.1039/9781847557988-00134.
- Characteristics of Ligand Recognition by a glmS Self‐Cleaving RibozymeLim J, Grove B, Roth A, Breaker R. Characteristics of Ligand Recognition by a glmS Self‐Cleaving Ribozyme. Angewandte Chemie 2006, 118: 6841-6845. DOI: 10.1002/ange.200602534.
- Genetic control by riboswitches and ribozymesBreaker R. Genetic control by riboswitches and ribozymes. The FASEB Journal 2006, 20: a455-a456. DOI: 10.1096/fasebj.20.4.a455-d.
- Riboswitches: Natural Metabolite‐binding RNAs Controlling Gene ExpressionRoth A, Welz R, Breaker R. Riboswitches: Natural Metabolite‐binding RNAs Controlling Gene Expression. 2006, 191-207. DOI: 10.1002/3527608192.ch8.
- Riboswitches as Genetic Control ElementsNahvi A, Breaker R. Riboswitches as Genetic Control Elements. 2006, 89-106. DOI: 10.1007/978-0-387-47257-7_6.
- Molecular‐Recognition Characteristics of SAM‐Binding RiboswitchesLim J, Winkler W, Nakamura S, Scott V, Breaker R. Molecular‐Recognition Characteristics of SAM‐Binding Riboswitches. Angewandte Chemie 2005, 118: 978-982. DOI: 10.1002/ange.200503198.
- Gene expression control: Harnessing RNA switchesBreaker R. Gene expression control: Harnessing RNA switches. Gene Therapy 2005, 12: 725-726. PMID: 19202632, DOI: 10.1038/sj.gt.3302461.
- Deoxyribozymes and Medical InnovationEmilsson G, Breaker R. Deoxyribozymes and Medical Innovation. 2004, 69-94. DOI: 10.1201/9781420037890.ch5.
- Selection In Vitro of Allosteric RibozymesRoth A, Breaker R. Selection In Vitro of Allosteric Ribozymes. 2004, 252: 145-164. DOI: 10.1385/1-59259-746-7:145.
- Genetic Control by Metabolite‐Binding RiboswitchesWinkler W, Breaker R. Genetic Control by Metabolite‐Binding Riboswitches. ChemInform 2003, 34: no-no. DOI: 10.1002/chin.200349270.
- Deoxyribozymes: new activities and new applicationsEmilsson G, Breaker R. Deoxyribozymes: new activities and new applications. Cellular And Molecular Life Sciences 2002, 59: 596-607. PMID: 12022469, DOI: 10.1007/s00018-002-8452-4.
- Characterization of a DNA-Cleaving deoxyribozymeCarmi N, Breaker R. Characterization of a DNA-Cleaving deoxyribozyme. Bioorganic & Medicinal Chemistry 2001, 9: 2589-2600. PMID: 11557347, DOI: 10.1016/s0968-0896(01)00035-9.
- Immobilized RNA switches for the analysis of complex chemical and biological mixturesSeetharaman S, Zivarts M, Sudarsan N, Breaker R. Immobilized RNA switches for the analysis of complex chemical and biological mixtures. Nature Biotechnology 2001, 19: 336-341. PMID: 11283591, DOI: 10.1038/86723.
- Cooperative binding of effectors by an allosteric ribozymeJose A, Soukup G, Breaker R. Cooperative binding of effectors by an allosteric ribozyme. Nucleic Acids Research 2001, 29: 1631-1637. PMID: 11266567, PMCID: PMC31269, DOI: 10.1093/nar/29.7.1631.
- Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes.Soukup G, DeRose E, Koizumi M, Breaker R. Generating new ligand-binding RNAs by affinity maturation and disintegration of allosteric ribozymes. RNA 2001, 7: 524-36. PMID: 11345431, PMCID: PMC1370106, DOI: 10.1017/s1355838201002175.
- In Vitro Selection of Kinase and Ligase DeoxyribozymesLi Y, Breaker R. In Vitro Selection of Kinase and Ligase Deoxyribozymes. Methods 2001, 23: 179-190. PMID: 11181037, DOI: 10.1006/meth.2000.1119.
- Tech.Sight. Molecular biology. Making catalytic DNAs.Breaker R. Tech.Sight. Molecular biology. Making catalytic DNAs. Science 2000, 290: 2095-6. PMID: 11187837, DOI: 10.1126/science.290.5499.2095.
- Molecular Recognition of cAMP by an RNA Aptamer †Koizumi M, Breaker R. Molecular Recognition of cAMP by an RNA Aptamer †. Biochemistry 2000, 39: 8983-8992. PMID: 10913311, DOI: 10.1021/bi000149n.
- Allosteric nucleic acid catalystsSoukup G, Breaker R. Allosteric nucleic acid catalysts. Current Opinion In Structural Biology 2000, 10: 318-325. PMID: 10851196, DOI: 10.1016/s0959-440x(00)00090-7.
- Structural diversity of self-cleaving ribozymesTang J, Breaker R. Structural diversity of self-cleaving ribozymes. Proceedings Of The National Academy Of Sciences Of The United States Of America 2000, 97: 5784-5789. PMID: 10823936, PMCID: PMC18511, DOI: 10.1073/pnas.97.11.5784.
- Altering molecular recognition of RNA aptamers by allosteric selection11Edited by D. E. DraperSoukup G, Emilsson G, Breaker R. Altering molecular recognition of RNA aptamers by allosteric selection11Edited by D. E. Draper. Journal Of Molecular Biology 2000, 298: 623-632. PMID: 10788325, DOI: 10.1006/jmbi.2000.3704.
- Capping DNA with DNA †Li Y, Liu Y, Breaker R. Capping DNA with DNA †. Biochemistry 2000, 39: 3106-3114. PMID: 10715132, DOI: 10.1021/bi992710r.
- Selection for Catalytic Function with Nucleic AcidsBreaker R. Selection for Catalytic Function with Nucleic Acids. Current Protocols In Nucleic Acid Chemistry 2000, 00: 9.4.1-9.4.17. PMID: 18428882, DOI: 10.1002/0471142700.nc0904s00.
- Nucleic acid molecular switchesSoukup G, Breaker R. Nucleic acid molecular switches. Trends In Biotechnology 1999, 17: 469-476. PMID: 10557159, DOI: 10.1016/s0167-7799(99)01383-9.
- In vitro selection of deoxyribozymes with DNA capping activity.Li Y, Liu Y, Breaker R. In vitro selection of deoxyribozymes with DNA capping activity. Nucleic Acids Symposium Series 1999, 42: 237-8. PMID: 10780467, DOI: 10.1093/nass/42.1.237.
- Allosteric ribozymes sensitive to the second messengers cAMP and cGMP.Koizumi M, Kerr J, Soukup G, Breaker R. Allosteric ribozymes sensitive to the second messengers cAMP and cGMP. Nucleic Acids Symposium Series 1999, 42: 275-6. PMID: 10780486, DOI: 10.1093/nass/42.1.275.
- Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMPKoizumi M, Soukup G, Kerr J, Breaker R. Allosteric selection of ribozymes that respond to the second messengers cGMP and cAMP. Nature Structural & Molecular Biology 1999, 6: 1062-1071. PMID: 10542100, DOI: 10.1038/14947.
- Relationship between internucleotide linkage geometry and the stability of RNA.Soukup G, Breaker R. Relationship between internucleotide linkage geometry and the stability of RNA. RNA 1999, 5: 1308-25. PMID: 10573122, PMCID: PMC1369853, DOI: 10.1017/s1355838299990891.
- Design of allosteric hammerhead ribozymes activated by ligand-induced structure stabilizationSoukup G, Breaker R. Design of allosteric hammerhead ribozymes activated by ligand-induced structure stabilization. Structure 1999, 7: 783-791. PMID: 10425680, DOI: 10.1016/s0969-2126(99)80102-6.
- Deoxyribozymes: New players in the ancient game of biocatalysisLi Y, Breaker R. Deoxyribozymes: New players in the ancient game of biocatalysis. Current Opinion In Structural Biology 1999, 9: 315-323. PMID: 10361095, DOI: 10.1016/s0959-440x(99)80042-6.
- Kinetics of RNA Degradation by Specific Base Catalysis of Transesterification Involving the 2‘-Hydroxyl GroupLi Y, Breaker R. Kinetics of RNA Degradation by Specific Base Catalysis of Transesterification Involving the 2‘-Hydroxyl Group. Journal Of The American Chemical Society 1999, 121: 5364-5372. DOI: 10.1021/ja990592p.
- Catalytic DNA: in training and seeking employmentBreaker R. Catalytic DNA: in training and seeking employment. Nature Biotechnology 1999, 17: 422-423. PMID: 10331790, DOI: 10.1038/8588.
- Engineering precision RNA molecular switchesSoukup G, Breaker R. Engineering precision RNA molecular switches. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 3584-3589. PMID: 10097080, PMCID: PMC22337, DOI: 10.1073/pnas.96.7.3584.
- Phosphorylating DNA with DNALi Y, Breaker R. Phosphorylating DNA with DNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 2746-2751. PMID: 10077582, PMCID: PMC15840, DOI: 10.1073/pnas.96.6.2746.
- In Vitro Selection of Nucleic Acid EnzymesBreaker R, Kurz M. In Vitro Selection of Nucleic Acid Enzymes. 1999, 243: 137-158. PMID: 10453642, DOI: 10.1007/978-3-642-60142-2_8.
- Mechanism for allosteric inhibition of an ATP-sensitive ribozymeTang J, Breaker R. Mechanism for allosteric inhibition of an ATP-sensitive ribozyme. Nucleic Acids Research 1998, 26: 4214-4221. PMID: 9722642, PMCID: PMC147823, DOI: 10.1093/nar/26.18.4214.
- An amino acid as a cofactor for a catalytic polynucleotideRoth A, Breaker R. An amino acid as a cofactor for a catalytic polynucleotide. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 6027-6031. PMID: 9600911, PMCID: PMC27579, DOI: 10.1073/pnas.95.11.6027.
- Cleaving DNA with DNACarmi N, Balkhi S, Breaker R. Cleaving DNA with DNA. Proceedings Of The National Academy Of Sciences Of The United States Of America 1998, 95: 2233-2237. PMID: 9482868, PMCID: PMC19303, DOI: 10.1073/pnas.95.5.2233.
- Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection.Tang J, Breaker R. Examination of the catalytic fitness of the hammerhead ribozyme by in vitro selection. RNA 1997, 3: 914-25. PMID: 9257650, PMCID: PMC1369536.
- DNA aptamers and DNA enzymesBreaker R. DNA aptamers and DNA enzymes. Current Opinion In Chemical Biology 1997, 1: 26-31. PMID: 9667831, DOI: 10.1016/s1367-5931(97)80105-6.
- Rational design of allosteric ribozymesTang J, Breaker R. Rational design of allosteric ribozymes. Cell Chemical Biology 1997, 4: 453-459. PMID: 9224568, DOI: 10.1016/s1074-5521(97)90197-6.
- DNA enzymesBreaker R. DNA enzymes. Nature Biotechnology 1997, 15: 427-431. PMID: 9131619, DOI: 10.1038/nbt0597-427.
- In vitro selection of self-cleaving DNAsCarmi N, Shultz L, Breaker R. In vitro selection of self-cleaving DNAs. Cell Chemical Biology 1996, 3: 1039-1046. PMID: 9000012, DOI: 10.1016/s1074-5521(96)90170-2.
- Are engineered proteins getting competition from RNA?Breaker R. Are engineered proteins getting competition from RNA? Current Opinion In Biotechnology 1996, 7: 442-448. PMID: 8768905, DOI: 10.1016/s0958-1669(96)80122-4.
- A DNA enzyme with Mg2+-dependent RNA phosphoesterase activityBreaker R, Joyce G. A DNA enzyme with Mg2+-dependent RNA phosphoesterase activity. Cell Chemical Biology 1995, 2: 655-660. PMID: 9383471, DOI: 10.1016/1074-5521(95)90028-4.
- Self-Incorporation of coenzymes by ribozymesBreaker R, Joyce G. Self-Incorporation of coenzymes by ribozymes. Journal Of Molecular Evolution 1995, 40: 551-558. PMID: 7643406, DOI: 10.1007/bf00160500.
- A universal adapter for chemical synthesis of DNA or RNA on any single type of solid supportSchwartz M, Breaker R, Asteriadis G, Gough G. A universal adapter for chemical synthesis of DNA or RNA on any single type of solid support. Tetrahedron Letters 1995, 36: 27-30. DOI: 10.1016/0040-4039(94)02161-4.
- Production of RNA by a polymerase protein encapsulated within phospholipid vesiclesChakrabarti A, Breaker R, Joyce G, Deamer D. Production of RNA by a polymerase protein encapsulated within phospholipid vesicles. Journal Of Molecular Evolution 1994, 39: 555-559. PMID: 7528810, DOI: 10.1007/bf00160400.
- A DNA enzyme that cleaves RNABreaker R, Joyce G. A DNA enzyme that cleaves RNA. Cell Chemical Biology 1994, 1: 223-229. PMID: 9383394, DOI: 10.1016/1074-5521(94)90014-0.
- Continuous in vitro evolution of bacteriophage RNA polymerase promoters.Breaker R, Banerji A, Joyce G. Continuous in vitro evolution of bacteriophage RNA polymerase promoters. Biochemistry 1994, 33: 11980-6. PMID: 7522554, DOI: 10.1021/bi00205a037.
- Inventing and improving ribozyme function: Rational design versus iterative selection methodsBreaker R, Joyce G. Inventing and improving ribozyme function: Rational design versus iterative selection methods. Trends In Biotechnology 1994, 12: 268-275. PMID: 7519862, DOI: 10.1016/0167-7799(94)90138-4.
- Emergence of a replicating species from an in vitro RNA evolution reaction.Breaker R, Joyce G. Emergence of a replicating species from an in vitro RNA evolution reaction. Proceedings Of The National Academy Of Sciences Of The United States Of America 1994, 91: 6093-6097. PMID: 7517040, PMCID: PMC44144, DOI: 10.1073/pnas.91.13.6093.
- Minimonsters: Evolutionary Byproducts of In Vitro RNA AmplificationBreaker R, Joyce G. Minimonsters: Evolutionary Byproducts of In Vitro RNA Amplification. 1994, 127-135. DOI: 10.1007/978-94-011-0754-9_11.
- Synthesis and properties of adenosine oligonucleotide analogues containing methylene groups in place of phosphodiester 5'-oxygens.Breaker R, Gough G, Gilham P. Synthesis and properties of adenosine oligonucleotide analogues containing methylene groups in place of phosphodiester 5'-oxygens. Biochemistry 1993, 32: 9125-8. PMID: 8396423, DOI: 10.1021/bi00086a017.
- Rapid synthesis of oligoribonucleotides using 2′-O-(o-nitrobenzyloxymethyl)-protected monomersSchwartz M, Breaker R, Asteriadis G, deBear J, Gough G. Rapid synthesis of oligoribonucleotides using 2′-O-(o-nitrobenzyloxymethyl)-protected monomers. Bioorganic & Medicinal Chemistry Letters 1992, 2: 1019-1024. DOI: 10.1016/s0960-894x(00)80610-1.
- Polynucleotide phosphorylase forms polymers from an ADP analog in which the 5′ oxygen is replaced by a methylene groupBreaker R, Gough G, Gilham P. Polynucleotide phosphorylase forms polymers from an ADP analog in which the 5′ oxygen is replaced by a methylene group. Nucleic Acids Research 1990, 18: 3085-3086. PMID: 2349124, PMCID: PMC330871, DOI: 10.1093/nar/18.10.3085.