Mark A Lemmon, PhD, FRS
Research & Publications
Biography
News
Locations
Extensive Research Description
Signaling Mechanisms of Receptor Tyrosine Kinases
A major focus of the Lemmon lab is to understand transmembrane signaling by growth factor receptor tyrosine kinases (RTKs), of which there are 58 in the human proteome – separated into 20 different families. Mutations in almost all of these RTKs – some activating, some inactivating – cause cancer or other diseases, and RTKs are important therapeutic targets. We are interested in understanding how these receptors signal, and – importantly – how RTK mutations seen in afflicted patients affect receptor activity. Understanding these mutations provides an important window into molecular mechanism, but also allows us to use our mechanistic understanding to advance development and application of targeted therapeutics. To achieve this, we combine cellular, biochemical, biophysical, and structural approaches – and collaborate closely with geneticists and clinical investigators. Our goal is to link detailed mechanistic understanding to biology in the intact organism (or patient). Although we are interested in all RTKs, and in RTK signaling in general – at the organismal, cellular, and molecular levels (and use a wide variety of approaches) – we are currently focused on the following families (or groups of families) or RTKs:
1. The Epidermal Growth Factor Receptor (EGFR) family
Often considered a ‘prototypic’ RTK, the EGFR has been a major focus of our work for the past decade or so. Combining crystallographic, cellular, and other approaches we have developed a sophisticated understanding of how growth factor binding promotes dimerization of the extracellular region of the receptor, how EGFR is regulated allosterically, and how its intracellular juxtamembrane region contributes to activation. We have also defined the molecular function of the extracellular EGFR inhibitor Argos, from which we hope to extract clues for developing new EGFR inhibitory approaches in cancer.
A second key area in our EGFR work is to understand how different activating ligands can promote distinct modes of signaling through this single receptor. EGF, TGF-alpha, betacellulin, HB-EGF, epiregulin, epigen, and amphiregulin all signal through EGFR - but with subtly different consequences. Our most recent work is revealing some unexpected structural origins for these differences that are impacting how we think about the EGFR. This work is also causing us to appreciate how kinetic aspects of RTK signaling may be very important in defining signaling specificity. We are extending this concept to other receptors, including several involved in immune cell regulation that may be important in immuno-oncology.
2. Understanding activating mutations in RTKs, and how they affect inhibitor response in cancer patients
Working with ALK mutations seen in neuroblastoma patients and EGFR mutations seen in lung cancer patients, we are trying to understand how to define which new mutations seen in patients are activating - in terms of their signaling activity - and how they respond to available ALK or EGFR inhibitors that are being used in the clinic. Working with Ravi Radhakrishnan in Penn Bioengineering, we are also trying to develop algorithms for predicting whether newly identified mutations are activating and inhibitor-sensitive, which we hope will one day guide clinical treatment.
3. RTKs that bind to ligands in the Wnt family
It is now known that several orphan RTKs, namely PTK7/CCK4 (called Lemon in Hydra!), Ror1/2, Ryk, and MuSK are involved in ‘non-canonical’ Wnt signaling. This is a new arena for RTKs, and how they are involved remains unclear. Moreover, PTK7/CCK4, Ror1/2 and Ryk all have so-called pseudokinases in their intracellular region. That is, they look like RTKs, but appear to have ‘dead’ tyrosine kinases. We are working hard to understand how these unusual RTKs mediate signaling by these unexpected ligands, combining biochemical, cellular and structural studies with a collaboration with Peter Klein’s lab at Penn in Xenopus. This work is likely to open new paradigms in RTK signaling and – we hope – to illuminate new therapeutic avenues. We also hope that these studies will shed new light on how pseudokinases function more broadly.
Receptor tyrosine kinases
Coauthors
Research Interests
Adenocarcinoma; Biochemistry; Cell Membrane; Crystallography; Protein-Tyrosine Kinases; Receptor Aggregation; Signal Transduction; Protein Structure, Tertiary; MAP Kinase Signaling System; Protein Kinase Inhibitors; ErbB Receptors; Single Molecule Imaging; Hydrogen Deuterium Exchange-Mass Spectrometry
Research Image
Figure_1
Selected Publications
- Circulating tumor DNA reveals mechanisms of lorlatinib resistance in patients with relapsed/refractory ALK-driven neuroblastomaBerko E, Witek G, Matkar S, Petrova Z, Wu M, Smith C, Daniels A, Kalna J, Kennedy A, Gostuski I, Casey C, Krytska K, Gerelus M, Pavlick D, Ghazarian S, Park J, Marachelian A, Maris J, Goldsmith K, Radhakrishnan R, Lemmon M, Mossé Y. Circulating tumor DNA reveals mechanisms of lorlatinib resistance in patients with relapsed/refractory ALK-driven neuroblastoma. Nature Communications 2023, 14: 2601. PMID: 37147298, PMCID: PMC10163008, DOI: 10.1038/s41467-023-38195-0.
- Efficacy of Osimertinib in Patients with Lung Cancer Positive for Uncommon EGFR Exon 19 Deletion MutationsGrant M, Aredo J, Starrett J, Stockhammer P, K. Rosenburgh I, Wurtz A, Piper-Valillo A, Piotrowska Z, Falcon C, Yu H, Aggarwal C, Scholes D, Patil T, Nguyen C, Phadke M, Li F, Neal J, Lemmon M, Walther Z, Politi K, Goldberg S. Efficacy of Osimertinib in Patients with Lung Cancer Positive for Uncommon EGFR Exon 19 Deletion Mutations. Clinical Cancer Research 2023, 29: of1-of8. PMID: 36913537, DOI: 10.1158/1078-0432.ccr-22-3497.
- Biochemical and structural basis for differential inhibitor sensitivity of EGFR with distinct exon 19 mutationsvan Alderwerelt van Rosenburgh I, Lu D, Grant M, Stayrook S, Phadke M, Walther Z, Goldberg S, Politi K, Lemmon M, Ashtekar K, Tsutsui Y. Biochemical and structural basis for differential inhibitor sensitivity of EGFR with distinct exon 19 mutations. Nature Communications 2022, 13: 6791. PMID: 36357385, PMCID: PMC9649653, DOI: 10.1038/s41467-022-34398-z.
- Glioblastoma mutations alter EGFR dimer structure to prevent ligand biasHu C, Leche CA, Kiyatkin A, Yu Z, Stayrook SE, Ferguson KM, Lemmon MA. Glioblastoma mutations alter EGFR dimer structure to prevent ligand bias. Nature 2022, 602: 518-522. PMID: 35140400, PMCID: PMC8857055, DOI: 10.1038/s41586-021-04393-3.
- ROR and RYK extracellular region structures suggest that receptor tyrosine kinases have distinct WNT-recognition modesShi F, Mendrola JM, Sheetz JB, Wu N, Sommer A, Speer KF, Noordermeer JN, Kan ZY, Perry K, Englander SW, Stayrook SE, Fradkin LG, Lemmon MA. ROR and RYK extracellular region structures suggest that receptor tyrosine kinases have distinct WNT-recognition modes. Cell Reports 2021, 37: 109834. PMID: 34686333, PMCID: PMC8650758, DOI: 10.1016/j.celrep.2021.109834.
- Phosphatidylserine binding directly regulates TIM-3 functionSmith CM, Li A, Krishnamurthy N, Lemmon MA. Phosphatidylserine binding directly regulates TIM-3 function. Biochemical Journal 2021, 478: 3331-3349. PMID: 34435619, PMCID: PMC8454703, DOI: 10.1042/bcj20210425.
- Structural Insights into Pseudokinase Domains of Receptor Tyrosine KinasesSheetz J, Mathea S, Karvonen H, Malhotra K, Chatterjee D, Niininen W, Perttila R, Preuss F, Suresh K, Stayrook S, Tsutsui Y, Radhakrishnan R, Ungureanu D, Knapp S, Lemmon M. Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. The FASEB Journal 2021, 35 DOI: 10.1096/fasebj.2021.35.s1.02446.
- Abstract PO032: TIM3 regulation by phosphatidylserineSmith C, Li A, Krishnamurthy N, Lemmon M. Abstract PO032: TIM3 regulation by phosphatidylserine. Cancer Immunology Research 2021, 9: po032-po032. DOI: 10.1158/2326-6074.tumimm20-po032.
- 210 Regulation of TIM-3 by phosphatidylserineSmith C, Li A, Krishnamurthy N, Lemmon M. 210 Regulation of TIM-3 by phosphatidylserine. Journal For ImmunoTherapy Of Cancer 2020, 8: a229-a229. DOI: 10.1136/jitc-2020-sitc2020.0210.
- Kinetics of receptor tyrosine kinase activation define ERK signaling dynamicsKiyatkin A, van Alderwerelt van Rosenburgh IK, Klein DE, Lemmon MA. Kinetics of receptor tyrosine kinase activation define ERK signaling dynamics. Science Signaling 2020, 13 PMID: 32817373, PMCID: PMC7521189, DOI: 10.1126/scisignal.aaz5267.
- Structural Insights into Pseudokinase Domains of Receptor Tyrosine KinasesSheetz JB, Mathea S, Karvonen H, Malhotra K, Chatterjee D, Niininen W, Perttilä R, Preuss F, Suresh K, Stayrook SE, Tsutsui Y, Radhakrishnan R, Ungureanu D, Knapp S, Lemmon MA. Structural Insights into Pseudokinase Domains of Receptor Tyrosine Kinases. Molecular Cell 2020, 79: 390-405.e7. PMID: 32619402, PMCID: PMC7543951, DOI: 10.1016/j.molcel.2020.06.018.
- 4558 Investigating the functional consequences of anaplastic lymphoma kinase (ALK) mutations arising upon Lorlatinib treatmentWitek G, Miller W, Slochower D, Berko E, Mossé Y, Lemmon M, Radhakrishnan R. 4558 Investigating the functional consequences of anaplastic lymphoma kinase (ALK) mutations arising upon Lorlatinib treatment. Journal Of Clinical And Translational Science 2020, 4: 9-10. PMCID: PMC8823389, DOI: 10.1017/cts.2020.74.
- Drug Sensitivity and Allele‐specificity of First‐line Osimertinib Resistance EGFR MutationsStarrett J, Guernet A, Cuomo M, Poels K, K. Rosenburgh I, Nagelberg A, Farnsworth D, Price K, Khan H, Ashtekar K, Gaefele M, Ayeni D, Stewart T, Kuhlmann A, Kaech S, Unni A, Homer R, Lockwood W, Michor F, Goldberg S, Lemmon M, Smith P, Cross D, Politi K. Drug Sensitivity and Allele‐specificity of First‐line Osimertinib Resistance EGFR Mutations. The FASEB Journal 2020, 34: 1-1. DOI: 10.1096/fasebj.2020.34.s1.00612.
- B32 Drug Sensitivity and Allele Specificity of First-Line Osimertinib Resistance EGFR MutationsStarrett J, Guernet A, Cuomo M, Poels K, Rosenburgh I, Nagelberg A, Farnsworth D, Price K, Khan H, Ashtekar K, Gaefele M, Ayeni D, Stewart T, Kuhlmann A, Kaech S, Unni A, Homer R, Lockwood W, Michor F, Goldberg S, Lemmon M, Smith P, Cross D, Politi K. B32 Drug Sensitivity and Allele Specificity of First-Line Osimertinib Resistance EGFR Mutations. Journal Of Thoracic Oncology 2020, 15: s36. DOI: 10.1016/j.jtho.2019.12.097.
- Non-acylated Wnts Can Promote SignalingSpeer KF, Sommer A, Tajer B, Mullins MC, Klein PS, Lemmon MA. Non-acylated Wnts Can Promote Signaling. Cell Reports 2019, 26: 875-883.e5. PMID: 30673610, PMCID: PMC6429962, DOI: 10.1016/j.celrep.2018.12.104.
- EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling KineticsFreed DM, Bessman NJ, Kiyatkin A, Salazar-Cavazos E, Byrne PO, Moore JO, Valley CC, Ferguson KM, Leahy DJ, Lidke DS, Lemmon MA. EGFR Ligands Differentially Stabilize Receptor Dimers to Specify Signaling Kinetics. Cell 2017, 171: 683-695.e18. PMID: 28988771, PMCID: PMC5650921, DOI: 10.1016/j.cell.2017.09.017.
- Dimerization of Tie2 mediated by its membrane-proximal FNIII domainsMoore JO, Lemmon MA, Ferguson KM. Dimerization of Tie2 mediated by its membrane-proximal FNIII domains. Proceedings Of The National Academy Of Sciences Of The United States Of America 2017, 114: 4382-4387. PMID: 28396397, PMCID: PMC5410832, DOI: 10.1073/pnas.1617800114.
- Molecular determinants of KA1 domain-mediated autoinhibition and phospholipid activation of MARK1 kinase.Emptage RP, Lemmon MA, Ferguson KM. Molecular determinants of KA1 domain-mediated autoinhibition and phospholipid activation of MARK1 kinase. Biochemical Journal 2017, 474: 385-398. PMID: 27879374, PMCID: PMC5317272, DOI: 10.1042/bcj20160792.
- Overcoming resistance to HER2 inhibitors through state-specific kinase bindingNovotny CJ, Pollari S, Park JH, Lemmon MA, Shen W, Shokat KM. Overcoming resistance to HER2 inhibitors through state-specific kinase binding. Nature Chemical Biology 2016, 12: 923-930. PMID: 27595329, PMCID: PMC5069157, DOI: 10.1038/nchembio.2171.
- Abstract 3904: Overcoming resistance to HER2 inhibitors through cell based screeningNovotny C, Pollari S, Park J, Lemmon M, Schultz P, Shen W, Shokat K. Abstract 3904: Overcoming resistance to HER2 inhibitors through cell based screening. Cancer Research 2016, 76: 3904-3904. DOI: 10.1158/1538-7445.am2016-3904.
- The Dark Side of Cell Signaling: Positive Roles for Negative RegulatorsLemmon MA, Freed DM, Schlessinger J, Kiyatkin A. The Dark Side of Cell Signaling: Positive Roles for Negative Regulators. Cell 2016, 164: 1172-1184. PMID: 26967284, PMCID: PMC4830124, DOI: 10.1016/j.cell.2016.02.047.
- The ALK/ROS1 Inhibitor PF-06463922 Overcomes Primary Resistance to Crizotinib in ALK-Driven NeuroblastomaInfarinato NR, Park JH, Krytska K, Ryles HT, Sano R, Szigety KM, Li Y, Zou HY, Lee NV, Smeal T, Lemmon MA, Mossé YP. The ALK/ROS1 Inhibitor PF-06463922 Overcomes Primary Resistance to Crizotinib in ALK-Driven Neuroblastoma. Cancer Discovery 2016, 6: 96-107. PMID: 26554404, PMCID: PMC4707106, DOI: 10.1158/2159-8290.cd-15-1056.
- Abstract 1619: The next-generation ALK inhibitor PF-06463922 overcomes primary resistance to crizotinib in neuroblastomaInfarinato N, Park J, Sano R, Krytska K, Ryles H, Zou H, Lee N, Smeal T, Lemmon M, Mosse Y. Abstract 1619: The next-generation ALK inhibitor PF-06463922 overcomes primary resistance to crizotinib in neuroblastoma. 2015, 1619-1619. DOI: 10.1158/1538-7445.am2015-1619.
- Ligand regulation of a constitutively dimeric EGF receptorFreed DM, Alvarado D, Lemmon MA. Ligand regulation of a constitutively dimeric EGF receptor. Nature Communications 2015, 6: 7380. PMID: 26060020, PMCID: PMC4465127, DOI: 10.1038/ncomms8380.
- Comparison of Saccharomyces cerevisiae F-BAR Domain Structures Reveals a Conserved Inositol Phosphate Binding SiteMoravcevic K, Alvarado D, Schmitz KR, Kenniston JA, Mendrola JM, Ferguson KM, Lemmon MA. Comparison of Saccharomyces cerevisiae F-BAR Domain Structures Reveals a Conserved Inositol Phosphate Binding Site. Structure 2015, 23: 352-363. PMID: 25620000, PMCID: PMC4319572, DOI: 10.1016/j.str.2014.12.009.
- Predicting the Effects of Clinically Observed Kinase Mutations using Molecular Modeling and Machine Learning AlgorithmsJordan E, Huwe P, Mosse Y, Lemmon M, Radhakrishnan R. Predicting the Effects of Clinically Observed Kinase Mutations using Molecular Modeling and Machine Learning Algorithms. Biophysical Journal 2015, 108: 376a. DOI: 10.1016/j.bpj.2014.11.2063.
- ALK Mutations Confer Differential Oncogenic Activation and Sensitivity to ALK Inhibition Therapy in NeuroblastomaBresler SC, Weiser DA, Huwe PJ, Park JH, Krytska K, Ryles H, Laudenslager M, Rappaport EF, Wood AC, McGrady PW, Hogarty MD, London WB, Radhakrishnan R, Lemmon MA, Mossé YP. ALK Mutations Confer Differential Oncogenic Activation and Sensitivity to ALK Inhibition Therapy in Neuroblastoma. Cancer Cell 2014, 26: 682-694. PMID: 25517749, PMCID: PMC4269829, DOI: 10.1016/j.ccell.2014.09.019.
- Complex Relationship between Ligand Binding and Dimerization in the Epidermal Growth Factor ReceptorBessman NJ, Bagchi A, Ferguson KM, Lemmon MA. Complex Relationship between Ligand Binding and Dimerization in the Epidermal Growth Factor Receptor. Cell Reports 2014, 9: 1306-1317. PMID: 25453753, PMCID: PMC4254573, DOI: 10.1016/j.celrep.2014.10.010.
- Allosteric Regulation of the Epidermal Growth Factor ReceptorBagchi A, Bessman N, Wu N, Raines L, Kan Z, Hu W, Englander S, Leahy D, Lemmon M, Ferguson K. Allosteric Regulation of the Epidermal Growth Factor Receptor. Biophysical Journal 2014, 106: 105a. DOI: 10.1016/j.bpj.2013.11.650.
- Abstract 1106: Mechanism for activation of mutated EGF receptors in lung cancer.Red Brewer M, Lai D, Lemmon M, Pao W. Abstract 1106: Mechanism for activation of mutated EGF receptors in lung cancer. Cancer Research 2013, 73: 1106-1106. DOI: 10.1158/1538-7445.am2013-1106.
- Understanding Kinase Activation of ALK in Neuroblastoma PatientsHuwe P, Bresler S, Park J, Lemmon M, Radhakrishnan R. Understanding Kinase Activation of ALK in Neuroblastoma Patients. Biophysical Journal 2013, 104: 662a. DOI: 10.1016/j.bpj.2012.11.3654.
- Tie2 Receptor Dimerization Mediated by its Extracellular FNIII DomainsMoore J, Lemmon M, Ferguson K. Tie2 Receptor Dimerization Mediated by its Extracellular FNIII Domains. Biophysical Journal 2013, 104: 608a. DOI: 10.1016/j.bpj.2012.11.3370.
- Erratum: Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastomaCarpenter E, Haglund E, Mace E, Deng D, Martinez D, Wood A, Chow A, Weiser D, Belcastro L, Winter C, Bresler S, Vigny M, Mazot P, Asgharzadeh S, Seeger R, Zhao H, Guo R, Christensen J, Orange J, Pawel B, Lemmon M, Mossé Y. Erratum: Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene 2012, 31: 4888-4888. DOI: 10.1038/onc.2012.208.
- Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastomaCarpenter EL, Haglund EA, Mace EM, Deng D, Martinez D, Wood AC, Chow AK, Weiser DA, Belcastro LT, Winter C, Bresler SC, Asgharzadeh S, Seeger R, Zhao H, Guo R, Christensen J, Orange J, Pawel B, Lemmon M, Mossé Y. Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Oncogene 2012, 31: 4859-4867. PMID: 22266870, PMCID: PMC3730824, DOI: 10.1038/onc.2011.647.
- Abstract 4563: Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastomaCarpenter E, Haglund E, Chow A, Wood A, Belcastro L, Christensen J, Vigny M, Maris J, Lemmon M, Mosse Y. Abstract 4563: Antibody targeting of anaplastic lymphoma kinase induces cytotoxicity of human neuroblastoma. Cancer Research 2011, 71: 4563-4563. DOI: 10.1158/1538-7445.am2011-4563.
- Abstract 4685: Mechanistic guidance of ALK inhibition for the treatment of neuroblastomaBresler S, Wood A, Haglund E, Christensen J, Maris J, Lemmon M, Mosse Y. Abstract 4685: Mechanistic guidance of ALK inhibition for the treatment of neuroblastoma. Cancer Research 2011, 71: 4685-4685. DOI: 10.1158/1538-7445.am2011-4685.
- Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic PhospholipidsMoravcevic K, Mendrola JM, Schmitz KR, Wang YH, Slochower D, Janmey PA, Lemmon MA. Kinase Associated-1 Domains Drive MARK/PAR1 Kinases to Membrane Targets by Binding Acidic Phospholipids. Cell 2010, 143: 966-977. PMID: 21145462, PMCID: PMC3031122, DOI: 10.1016/j.cell.2010.11.028.
- Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF ReceptorAlvarado D, Klein DE, Lemmon MA. Structural Basis for Negative Cooperativity in Growth Factor Binding to an EGF Receptor. Cell 2010, 142: 568-579. PMID: 20723758, PMCID: PMC2925043, DOI: 10.1016/j.cell.2010.07.015.
- Cell Signaling by Receptor Tyrosine KinasesLemmon MA, Schlessinger J. Cell Signaling by Receptor Tyrosine Kinases. Cell 2010, 141: 1117-1134. PMID: 20602996, PMCID: PMC2914105, DOI: 10.1016/j.cell.2010.06.011.
- Chapter 136 Pleckstrin Homology (PH) DomainsLemmon M. Chapter 136 Pleckstrin Homology (PH) Domains. 2010, 1093-1101. DOI: 10.1016/b978-0-12-374145-5.00136-4.
- Conserved Hydrophobic and Hydrophilic Bond Interaction Networks in ErbB Family KinasesShih A, Telesco S, Choi S, Lemmon M, Radhakrishnan R. Conserved Hydrophobic and Hydrophilic Bond Interaction Networks in ErbB Family Kinases. Biophysical Journal 2010, 98: 445a. DOI: 10.1016/j.bpj.2009.12.2417.
- ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptorAlvarado D, Klein DE, Lemmon MA. ErbB2 resembles an autoinhibited invertebrate epidermal growth factor receptor. Nature 2009, 461: 287-291. PMID: 19718021, PMCID: PMC2762480, DOI: 10.1038/nature08297.
- Characterization of Novel PtdIns(4,5)P2 Effector DomainsMoravcevic K, Lemmon M. Characterization of Novel PtdIns(4,5)P2 Effector Domains. The FASEB Journal 2009, 23: 873.6-873.6. DOI: 10.1096/fasebj.23.1_supplement.873.6.
- Auto‐inhibition of dynamin GTPase activity is regulated by PH domain interactionsKenniston J, Lemmon M. Auto‐inhibition of dynamin GTPase activity is regulated by PH domain interactions. The FASEB Journal 2009, 23: 697.3-697.3. DOI: 10.1096/fasebj.23.1_supplement.697.3.
- Structural basis for EGFR ligand sequestration by ArgosKlein D, Stayrook S, Shi F, Narayan K, Lemmon M. Structural basis for EGFR ligand sequestration by Argos. The FASEB Journal 2009, 23: 883.7-883.7. DOI: 10.1096/fasebj.23.1_supplement.883.7.
- Regulation of the epidermal growth factor receptor intracellular domainChoi S, Lemmon M. Regulation of the epidermal growth factor receptor intracellular domain. The FASEB Journal 2009, 23: 883.2-883.2. DOI: 10.1096/fasebj.23.1_supplement.883.2.
- Phosphoinositide‐mimicking peptide sequences are binding targets for PH domainsMendrola J, Lemmon M. Phosphoinositide‐mimicking peptide sequences are binding targets for PH domains. The FASEB Journal 2009, 23: 873.7-873.7. DOI: 10.1096/fasebj.23.1_supplement.873.7.
- ErbB2/HER2/Neu resembles an autoinhibited invertebrate EGF receptorAlvarado D, Klein D, Lemmon M. ErbB2/HER2/Neu resembles an autoinhibited invertebrate EGF receptor. The FASEB Journal 2009, 23: 884.3-884.3. DOI: 10.1096/fasebj.23.1_supplement.884.3.
- Structural basis for EGFR ligand sequestration by ArgosKlein DE, Stayrook SE, Shi F, Narayan K, Lemmon MA. Structural basis for EGFR ligand sequestration by Argos. Nature 2008, 453: 1271-1275. PMID: 18500331, PMCID: PMC2526102, DOI: 10.1038/nature06978.
- Harnessing Novel Secreted Inhibitors of EGF Receptor Signaling for Breast Cancer TreatmentLemmon M. Harnessing Novel Secreted Inhibitors of EGF Receptor Signaling for Breast Cancer Treatment. 2008 DOI: 10.21236/ada488172.
- Mice Lacking Pleckstrin or Pleckstrin-2 Each Have Unique Platelet Secretion Defects.Wang Y, Lian L, Flick M, Degen J, Lemmon M, Abrams C. Mice Lacking Pleckstrin or Pleckstrin-2 Each Have Unique Platelet Secretion Defects. Blood 2007, 110: 134-134. DOI: 10.1182/blood.v110.11.134.134.
- Activation and Inhibition of the EGF ReceptorLemmon M. Activation and Inhibition of the EGF Receptor. The FASEB Journal 2007, 21: a46-a46. DOI: 10.1096/fasebj.21.5.a46-b.
- Harnessing Novel Secreted Inhibitors of EGF Receptor Signaling for Breast Cancer TreatmentLemmon M. Harnessing Novel Secreted Inhibitors of EGF Receptor Signaling for Breast Cancer Treatment. 2007 DOI: 10.21236/ada471085.
- Investigation of Novel Molecular Targets for Pleckstrin Homology (PH) Domains Found in Oncogenes Implicated in Breast CancerKeleti D, Lemmon M. Investigation of Novel Molecular Targets for Pleckstrin Homology (PH) Domains Found in Oncogenes Implicated in Breast Cancer. 2007 DOI: 10.21236/ada469536.
- Pleckstrin homology (PH) domains and phosphoinositidesLemmon M. Pleckstrin homology (PH) domains and phosphoinositides. Biochemical Society Symposia 2007, 74: 81-93. DOI: 10.1042/bss2007c08.
- Knockout of the PKC Substrate Pleckstrin Causes Pleomorphic Defects in Platelets, Lymphocytes and Granulocytes.Lian L, Wang Y, Chen X, Bach T, Lenox L, Zhu P, Flick M, Scott E, Degen J, Freedman B, Koretzky G, Lemmon M, Abrams C. Knockout of the PKC Substrate Pleckstrin Causes Pleomorphic Defects in Platelets, Lymphocytes and Granulocytes. Blood 2006, 108: 394-394. DOI: 10.1182/blood.v108.11.394.394.
- Specificity of the Myotubularin Family of Phosphatidylinositol-3-phosphatase Is Determined by the PH/GRAM Domain*Choudhury P, Srivastava S, Li Z, Ko K, Albaqumi M, Narayan K, Coetzee W, Lemmon M, Skolnik E. Specificity of the Myotubularin Family of Phosphatidylinositol-3-phosphatase Is Determined by the PH/GRAM Domain*. Journal Of Biological Chemistry 2006, 281: 31762-31769. DOI: 10.1016/s0021-9258(19)84091-7.
- PH DomainsLemmon M, Keleti D. PH Domains. 2004, 337-363. DOI: 10.1002/3527603611.ch17.
- Mechanism of erbB1 and erbB2 Hetero-OligomerizationYu J, Lemmon M. Mechanism of erbB1 and erbB2 Hetero-Oligomerization. 2004 DOI: 10.21236/ada435261.
- Rapid Visual Assays of Oncogenic Aberrant ErbB Receptor Activation Using Fluorescence MicroscopyBerger M, Lemmon M. Rapid Visual Assays of Oncogenic Aberrant ErbB Receptor Activation Using Fluorescence Microscopy. 2004 DOI: 10.21236/ada427040.
- Molecular Determinants of tGolgin-1 FunctionYoshino A, Marks M, Lemmon M. Molecular Determinants of tGolgin-1 Function. 2003 DOI: 10.21236/ada418143.
- Chapter 150 Pleckstrin Homology (PH) DomainsLemmon M. Chapter 150 Pleckstrin Homology (PH) Domains. 2003, 161-169. DOI: 10.1016/b978-012124546-7/50511-8.
- Molecular Determinants of tGolgin-1 FunctionYoshino A, Marks M, Lemmon M. Molecular Determinants of tGolgin-1 Function. 2002 DOI: 10.21236/ada408101.
- Mechanism of ErbB1 and ErbB2 Hetero-OligomerizationYu J, Lemmon M. Mechanism of ErbB1 and ErbB2 Hetero-Oligomerization. 2002 DOI: 10.21236/ada409630.
- Study of the Regulation of ErbB Signaling by Receptor-Mediated EndocytosisLee A, Lemmon M. Study of the Regulation of ErbB Signaling by Receptor-Mediated Endocytosis. 2002 DOI: 10.21236/ada406114.
- Quantitative Analysis of the Effect of Phosphoinositide Interactions on the Function of Dbl Family Proteins*Snyder J, Rossman K, Baumeister M, Pruitt W, Siderovski D, Der C, Lemmon M, Sondek J. Quantitative Analysis of the Effect of Phosphoinositide Interactions on the Function of Dbl Family Proteins*. Journal Of Biological Chemistry 2001, 276: 45868-45875. PMID: 11577097, DOI: 10.1074/jbc.m106731200.
- All Phox Homology (PX) Domains from Saccharomyces cerevisiae Specifically Recognize Phosphatidylinositol 3-Phosphate*Yu J, Lemmon M. All Phox Homology (PX) Domains from Saccharomyces cerevisiae Specifically Recognize Phosphatidylinositol 3-Phosphate*. Journal Of Biological Chemistry 2001, 276: 44179-44184. PMID: 11557775, DOI: 10.1074/jbc.m108811200.
- Development of Strategies to Manipulate ErbB Receptor Heterodimerization from a Quantitative Analysis of Receptor/Ligand RelationshipsLemmon M. Development of Strategies to Manipulate ErbB Receptor Heterodimerization from a Quantitative Analysis of Receptor/Ligand Relationships. 2001 DOI: 10.21236/ada398353.
- High-Affinity Binding of a FYVE Domain to Phosphatidylinositol 3-Phosphate Requires Intact Phospholipid but Not FYVE Domain Oligomerization †Sankaran V, Klein D, Sachdeva M, Lemmon M. High-Affinity Binding of a FYVE Domain to Phosphatidylinositol 3-Phosphate Requires Intact Phospholipid but Not FYVE Domain Oligomerization †. Biochemistry 2001, 40: 8581-8587. PMID: 11456498, DOI: 10.1021/bi010425d.
- Molecular determinants within pleckstrin homology (PH) domains that allow for specific recognition of phosphoinositidesLemmon M. Molecular determinants within pleckstrin homology (PH) domains that allow for specific recognition of phosphoinositides. Biochemical Society Transactions 2001, 29: a47-a47. DOI: 10.1042/bst029a047a.
- Crystal Structure of Fibroblast Growth Factor 9 Reveals Regions Implicated in Dimerization and Autoinhibition*Plotnikov A, Eliseenkova A, Ibrahimi O, Shriver Z, Sasisekharan R, Lemmon M, Mohammadi M. Crystal Structure of Fibroblast Growth Factor 9 Reveals Regions Implicated in Dimerization and Autoinhibition*. Journal Of Biological Chemistry 2000, 276: 4322-4329. PMID: 11060292, DOI: 10.1074/jbc.m006502200.
- Extracellular domains drive homo‐ but not hetero‐dimerization of erbB receptorsFerguson K, Darling P, Mohan M, Macatee T, Lemmon M. Extracellular domains drive homo‐ but not hetero‐dimerization of erbB receptors. The EMBO Journal 2000, 19: 4632-4643. PMID: 10970856, PMCID: PMC302059, DOI: 10.1093/emboj/19.17.4632.
- Signal-dependent membrane targeting by pleckstrin homology (PH) domainsLEMMON M, FERGUSON K. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochemical Journal 2000, 350: 1-18. DOI: 10.1042/bj3500001.
- Structural Basis for Discrimination of 3-Phosphoinositides by Pleckstrin Homology DomainsFerguson K, Kavran J, Sankaran V, Fournier E, Isakoff S, Skolnik E, Lemmon M. Structural Basis for Discrimination of 3-Phosphoinositides by Pleckstrin Homology Domains. Molecular Cell 2000, 6: 373-384. PMID: 10983984, DOI: 10.1016/s1097-2765(00)00037-x.
- The Role of the Pleckstrin Homology Domain in Membrane Targeting and Activation of Phospholipase Cβ1 *Razzini G, Brancaccio A, Lemmon M, Guarnieri S, Falasca M. The Role of the Pleckstrin Homology Domain in Membrane Targeting and Activation of Phospholipase Cβ1 *. Journal Of Biological Chemistry 2000, 275: 14873-14881. PMID: 10809731, DOI: 10.1074/jbc.275.20.14873.
- Study of the Regulation of erbB Signaling by Receptor-mediated EndocytosisLee A, Lemmon M. Study of the Regulation of erbB Signaling by Receptor-mediated Endocytosis. 2000 DOI: 10.21236/ada383058.
- Structural bases for specific phosphoinositide binding by PH domainsLemmon M. Structural bases for specific phosphoinositide binding by PH domains. Biochemical Society Transactions 1999, 27: a73-a73. DOI: 10.1042/bst027a073a.
- Dominant-negative inhibition of receptor-mediated endocytosis by a dynamin-1 mutant with a defective pleckstrin homology domainLee A, Frank D, Marks M, Lemmon M. Dominant-negative inhibition of receptor-mediated endocytosis by a dynamin-1 mutant with a defective pleckstrin homology domain. Current Biology 1999, 9: 261-265. PMID: 10074457, DOI: 10.1016/s0960-9822(99)80115-8.
- Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formationJost M, Simpson F, Kavran J, Lemmon M, Schmid S. Phosphatidylinositol-4,5-bisphosphate is required for endocytic coated vesicle formation. Current Biology 1998, 8: 1399-1404. PMID: 9889104, DOI: 10.1016/s0960-9822(98)00022-0.
- Specificity and Promiscuity in Phosphoinositide Binding by Pleckstrin Homology Domains*Kavran J, Klein D, Lee A, Falasca M, Isakoff S, Skolnik E, Lemmon M. Specificity and Promiscuity in Phosphoinositide Binding by Pleckstrin Homology Domains*. Journal Of Biological Chemistry 1998, 273: 30497-30508. PMID: 9804818, DOI: 10.1074/jbc.273.46.30497.
- The Pleckstrin Homology Domains of Dynamin Isoforms Require Oligomerization for High Affinity Phosphoinositide Binding*Klein D, Lee A, Frank D, Marks M, Lemmon M. The Pleckstrin Homology Domains of Dynamin Isoforms Require Oligomerization for High Affinity Phosphoinositide Binding*. Journal Of Biological Chemistry 1998, 273: 27725-27733. PMID: 9765310, DOI: 10.1074/jbc.273.42.27725.
- Identification and analysis of PH domain‐containing targets of phosphatidylinositol 3‐kinase using a novel in vivo assay in yeastIsakoff S, Cardozo T, Andreev J, Li Z, Ferguson K, Abagyan R, Lemmon M, Aronheim A, Skolnik E. Identification and analysis of PH domain‐containing targets of phosphatidylinositol 3‐kinase using a novel in vivo assay in yeast. The EMBO Journal 1998, 17: 5374-5387. PMID: 9736615, PMCID: PMC1170863, DOI: 10.1093/emboj/17.18.5374.
- Transmembrane Signaling by Receptor OligomerizationLemmon M, Schlessinger J. Transmembrane Signaling by Receptor Oligomerization. 1998, 84: 49-71. DOI: 10.1385/0-89603-488-7:49.
- Regulatory recruitment of signalling molecules to the cell membrane by pleckstrinhomology domainsM.A. L, M. F, J. S, K. F. Regulatory recruitment of signalling molecules to the cell membrane by pleckstrinhomology domains. Trends In Cell Biology 1997, 7: 237-242. PMID: 17708952, DOI: 10.1016/s0962-8924(97)01065-9.
- Specific role for the PH domain of dynamin‐1 in the regulation of rapid endocytosis in adrenal chromaffin cellsArtalejo C, Lemmon M, Schlessinger J, Palfrey H. Specific role for the PH domain of dynamin‐1 in the regulation of rapid endocytosis in adrenal chromaffin cells. The EMBO Journal 1997, 16: 1565-1574. PMID: 9130701, PMCID: PMC1169760, DOI: 10.1093/emboj/16.7.1565.
- Kit Receptor Dimerization Is Driven by Bivalent Binding of Stem Cell Factor*Lemmon M, Pinchasi D, Zhou M, Lax I, Schlessinger J. Kit Receptor Dimerization Is Driven by Bivalent Binding of Stem Cell Factor*. Journal Of Biological Chemistry 1997, 272: 6311-6317. PMID: 9045650, DOI: 10.1074/jbc.272.10.6311.
- Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformationBurke C, Lemmon M, Coren B, Engelman D, Stern D. Dimerization of the p185neu transmembrane domain is necessary but not sufficient for transformation. Oncogene 1997, 14: 687-696. PMID: 9038376, DOI: 10.1038/sj.onc.1200873.
- Two EGF molecules contribute additively to stabilization of the EGFR dimerLemmon M, Bu Z, Ladbury J, Zhou M, Pinchasi D, Lax I, Engelman D, Schlessinger J. Two EGF molecules contribute additively to stabilization of the EGFR dimer. The EMBO Journal 1997, 16: 281-294. PMID: 9029149, PMCID: PMC1169635, DOI: 10.1093/emboj/16.2.281.
- PH domains: diverse sequences with a common membrane association functionFerguson K, Lemmon M, Schlessinger J, Sigler P. PH domains: diverse sequences with a common membrane association function. Acta Crystallographica Section A: Foundations And Advances 1996, 52: c185-c185. DOI: 10.1107/s0108767396091908.
- Ala‐insertion scanning mutagenesis of the glycophorin a transmembrane helix: A rapid way to map helix‐helix interactions in integral membrane proteinsMingarro I, Whitley P, Von Heijne G, Lemmon M. Ala‐insertion scanning mutagenesis of the glycophorin a transmembrane helix: A rapid way to map helix‐helix interactions in integral membrane proteins. Protein Science 1996, 5: 1339-1341. PMID: 8819166, PMCID: PMC2143459, DOI: 10.1002/pro.5560050712.
- PH Domains: Diverse Sequences with a Common Fold Recruit Signaling Molecules to the Cell SurfaceLemmon M, Ferguson K, Schlessinger J. PH Domains: Diverse Sequences with a Common Fold Recruit Signaling Molecules to the Cell Surface. Cell 1996, 85: 621-624. PMID: 8646770, DOI: 10.1016/s0092-8674(00)81022-3.
- Thermodynamic Studies of SHC Phosphotyrosine Interaction Domain Recognition of the NPXpY Motif (∗)Mandiyan V, O'Brien R, Zhou M, Margolis B, Lemmon M, Sturtevant J, Schlessinger J. Thermodynamic Studies of SHC Phosphotyrosine Interaction Domain Recognition of the NPXpY Motif (∗). Journal Of Biological Chemistry 1996, 271: 4770-4775. PMID: 8617744, DOI: 10.1074/jbc.271.9.4770.
- Identification of the Binding Site for Acidic Phospholipids on the PH Domain of Dynamin: Implications for Stimulation of GTPase ActivityZheng J, Cahill S, Lemmon M, Fushman D, Schlessinger J, Cowburn D. Identification of the Binding Site for Acidic Phospholipids on the PH Domain of Dynamin: Implications for Stimulation of GTPase Activity. Journal Of Molecular Biology 1996, 255: 14-21. PMID: 8568861, DOI: 10.1006/jmbi.1996.0002.
- Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domainFerguson K, Lemmon M, Schlessinger J, Sigler P. Structure of the high affinity complex of inositol trisphosphate with a phospholipase C pleckstrin homology domain. Cell 1995, 83: 1037-1046. PMID: 8521504, DOI: 10.1016/0092-8674(95)90219-8.
- Regulation of growth factor activation by proteoglycans: What is the role of the low affinity receptors?Schlessinger J, Lax I, Lemmon M. Regulation of growth factor activation by proteoglycans: What is the role of the low affinity receptors? Cell 1995, 83: 357-360. PMID: 8521464, DOI: 10.1016/0092-8674(95)90112-4.
- Scratching the surface with the PH domainFerguson K, Lemmon M, Sigler P, Schlessinger J. Scratching the surface with the PH domain. Nature Structural & Molecular Biology 1995, 2: 715-718. PMID: 7552736, DOI: 10.1038/nsb0995-715.
- Helix-helix interactions inside membranesEngelman D, Adair B, Brunger A, Hunt J, Kahn T, Lemmon M, MacKenzie K, Treutlein H. Helix-helix interactions inside membranes. 1995, 297-310. DOI: 10.1007/978-3-0348-9057-1_21.
- Regulation of signal transduction and signal diversity by receptor oligomerizationLemmon M, Schlessinger J. Regulation of signal transduction and signal diversity by receptor oligomerization. Trends In Biochemical Sciences 1994, 19: 459-463. PMID: 7855887, DOI: 10.1016/0968-0004(94)90130-9.
- Crystal structure at 2.2 Å resolution of the pleckstrin homology domain from human dynaminFerguson K, Lemmon M, Schlessinger J, Sigler P. Crystal structure at 2.2 Å resolution of the pleckstrin homology domain from human dynamin. Cell 1994, 79: 199-209. PMID: 7954789, DOI: 10.1016/0092-8674(94)90190-2.
- Specificity and promiscuity in membrane helix interactionsLemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions. FEBS Letters 1994, 346: 17-20. PMID: 8206151, DOI: 10.1016/0014-5793(94)00467-6.
- Specificity and promiscuity in membrane helix interactionsLemmon M, Engelman D. Specificity and promiscuity in membrane helix interactions. Quarterly Reviews Of Biophysics 1994, 27: 157-218. PMID: 7984776, DOI: 10.1017/s0033583500004522.
- A dimerization motif for transmembrane α–helicesLemmon M, Treutlein H, Adams P, Brünger A, Engelman D. A dimerization motif for transmembrane α–helices. Nature Structural & Molecular Biology 1994, 1: 157-163. PMID: 7656033, DOI: 10.1038/nsb0394-157.
- Simulation of helix association in membranes: modeling the glycophorin A transmembrane domainTreutlein H, Lemmon M, Engleman D, Brunger A. Simulation of helix association in membranes: modeling the glycophorin A transmembrane domain. 1993, i: 708-714 vol.1. DOI: 10.1109/hicss.1993.270670.
- Helix-helix interactions inside lipid bilayersLemmon M, Engelman D. Helix-helix interactions inside lipid bilayers. Current Opinion In Structural Biology 1992, 2: 511-518. PMCID: PMC7133266, DOI: 10.1016/0959-440x(92)90080-q.
- Dimerization of Glycophorin a Transmembrane Helices: Mutagenesis and ModelingEngelman D, Adair B, Brünger A, Flanagan J, Lemmon M, Treutlein H, Zhang J. Dimerization of Glycophorin a Transmembrane Helices: Mutagenesis and Modeling. 1992, 25: 115-125. DOI: 10.1007/978-94-011-2718-9_11.