Jason Crawford, PhD
Research & Publications
Biography
News
Research Summary
The Crawford laboratory focuses on Metabolism at the Human-Microbe Interface. High-throughput genome sequencing of bacteria (and fungi) has revealed many highly unusual “orphan” biosynthetic gene clusters suspected of synthesizing novel, structurally diverse, and biologically active small molecules. These types of naturally produced molecules often regulate complex interactions with their animal hosts, hold a rich history of being utilized as human drugs, and serve as excellent molecular probes for identifying new drug targets for a wide variety of diseases. Additionally, there are still many novel metabolites of functional relevance in well-characterized animals, such as humans and mice. Using a blend of small molecule chemistry, protein biochemistry, cell biology, and microbiology, the lab exploits the natural interactions between bacteria and animals to discover new molecules with signaling, antimicrobial, immunomodulatory, and anticancer activities. The lab also connects these products to their underlying biosynthetic genes, characterizes the biosynthetic enzymes involved in their construction, and investigates their roles in biology and medicine.
In this context, we address two major biological questions at the host-bacteria interface, one from the microbe perspective and one from the host perspective:
How do bacterial human/mouse microbiome members regulate host responses, such as inflammation, signal transduction, and DNA damage, at the metabolic level?
How do human and mouse immune cells, such as macrophages, rewire immunometabolism in response to microbial insults?
Specialized Terms: Small molecule signaling; Host-bacteria interactions; Specialized metabolism; Bacteria; Pathogen; Microbiome; Macrophage; Immunometabolism
Coauthors
Research Interests
Bacteria; Chemistry; Host-Pathogen Interactions
Selected Publications
- Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolitesCao Y, Oh J, Xue M, Huh WJ, Wang J, Gonzalez-Hernandez JA, Rice TA, Martin AL, Song D, Crawford JM, Herzon SB, Palm NW. Commensal microbiota from patients with inflammatory bowel disease produce genotoxic metabolites. Science 2022, 378: eabm3233. PMID: 36302024, PMCID: PMC9993714, DOI: 10.1126/science.abm3233.
- N‐Acyl Amides from Neisseria meningitidis and Their Role in Sphingosine Receptor SignalingCho W, York AG, Wang R, Wyche TP, Piizzi G, Flavell RA, Crawford JM. N‐Acyl Amides from Neisseria meningitidis and Their Role in Sphingosine Receptor Signaling. ChemBioChem 2022, 23: e202200490-e202200490. PMID: 36112057, PMCID: PMC9762135, DOI: 10.1002/cbic.202200490.
- LACC1 bridges NOS2 and polyamine metabolism in inflammatory macrophagesWei Z, Oh J, Flavell RA, Crawford JM. LACC1 bridges NOS2 and polyamine metabolism in inflammatory macrophages. Nature 2022, 609: 348-353. PMID: 35978195, PMCID: PMC9813773, DOI: 10.1038/s41586-022-05111-3.
- RNA m6A demethylase ALKBH5 regulates the development of γδ T cellsDing C, Xu H, Yu Z, Roulis M, Qu R, Zhou J, Oh J, Crawford J, Gao Y, Jackson R, Sefik E, Li S, Wei Z, Skadow M, Yin Z, Ouyang X, Wang L, Zou Q, Su B, Hu W, Flavell RA, Li HB. RNA m6A demethylase ALKBH5 regulates the development of γδ T cells. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2203318119. PMID: 35939687, PMCID: PMC9388086, DOI: 10.1073/pnas.2203318119.
- Fossil biomolecules reveal an avian metabolism in the ancestral dinosaurWiemann J, Menéndez I, Crawford JM, Fabbri M, Gauthier JA, Hull PM, Norell MA, Briggs DEG. Fossil biomolecules reveal an avian metabolism in the ancestral dinosaur. Nature 2022, 606: 522-526. PMID: 35614213, DOI: 10.1038/s41586-022-04770-6.
- Cross-kingdom expression of synthetic genetic elements promotes discovery of metabolites in the human microbiomePatel JR, Oh J, Wang S, Crawford JM, Isaacs FJ. Cross-kingdom expression of synthetic genetic elements promotes discovery of metabolites in the human microbiome. Cell 2022, 185: 1487-1505.e14. PMID: 35366417, DOI: 10.1016/j.cell.2022.03.008.
- A Conserved Nonribosomal Peptide Synthetase in Xenorhabdus bovienii Produces Citrulline-Functionalized LipopeptidesLi JH, Cho W, Hamchand R, Oh J, Crawford JM. A Conserved Nonribosomal Peptide Synthetase in Xenorhabdus bovienii Produces Citrulline-Functionalized Lipopeptides. Journal Of Natural Products 2021, 84: 2692-2699. PMID: 34581573, PMCID: PMC9970011, DOI: 10.1021/acs.jnatprod.1c00573.
- Escherichia coli small molecule metabolism at the host–microorganism interfaceGatsios A, Kim CS, Crawford JM. Escherichia coli small molecule metabolism at the host–microorganism interface. Nature Chemical Biology 2021, 17: 1016-1026. PMID: 34552219, PMCID: PMC8675634, DOI: 10.1038/s41589-021-00807-5.
- Natural Products: An Era of Discovery in Organic ChemistryCrawford JM, Tang GL, Herzon SB. Natural Products: An Era of Discovery in Organic Chemistry. The Journal Of Organic Chemistry 2021, 86: 10943-10945. PMID: 34412479, DOI: 10.1021/acs.joc.1c01753.
- Escherichia coli-Derived γ‑Lactams and Structurally Related Metabolites Are Produced at the Intersection of Colibactin and Fatty Acid BiosynthesisKim CS, Turocy T, Moon G, Shine EE, Crawford JM. Escherichia coli-Derived γ‑Lactams and Structurally Related Metabolites Are Produced at the Intersection of Colibactin and Fatty Acid Biosynthesis. Organic Letters 2021, 23: 6895-6899. PMID: 34406772, DOI: 10.1021/acs.orglett.1c02461.
- Molecules from the MicrobiomeShine EE, Crawford JM. Molecules from the Microbiome. Annual Review Of Biochemistry 2021, 90: 1-27. PMID: 33770448, DOI: 10.1146/annurev-biochem-080320-115307.
- A community resource for paired genomic and metabolomic data miningSchorn MA, Verhoeven S, Ridder L, Huber F, Acharya DD, Aksenov AA, Aleti G, Moghaddam JA, Aron AT, Aziz S, Bauermeister A, Bauman KD, Baunach M, Beemelmanns C, Beman JM, Berlanga-Clavero MV, Blacutt AA, Bode HB, Boullie A, Brejnrod A, Bugni TS, Calteau A, Cao L, Carrión VJ, Castelo-Branco R, Chanana S, Chase AB, Chevrette MG, Costa-Lotufo LV, Crawford JM, Currie CR, Cuypers B, Dang T, de Rond T, Demko AM, Dittmann E, Du C, Drozd C, Dujardin JC, Dutton RJ, Edlund A, Fewer DP, Garg N, Gauglitz JM, Gentry EC, Gerwick L, Glukhov E, Gross H, Gugger M, Guillén Matus DG, Helfrich EJN, Hempel BF, Hur JS, Iorio M, Jensen PR, Kang KB, Kaysser L, Kelleher NL, Kim CS, Kim KH, Koester I, König GM, Leao T, Lee SR, Lee YY, Li X, Little JC, Maloney KN, Männle D, Martin H. C, McAvoy AC, Metcalf WW, Mohimani H, Molina-Santiago C, Moore BS, Mullowney MW, Muskat M, Nothias LF, O’Neill E, Parkinson EI, Petras D, Piel J, Pierce EC, Pires K, Reher R, Romero D, Roper MC, Rust M, Saad H, Saenz C, Sanchez LM, Sørensen SJ, Sosio M, Süssmuth RD, Sweeney D, Tahlan K, Thomson RJ, Tobias NJ, Trindade-Silva AE, van Wezel GP, Wang M, Weldon KC, Zhang F, Ziemert N, Duncan KR, Crüsemann M, Rogers S, Dorrestein PC, Medema MH, van der Hooft JJJ. A community resource for paired genomic and metabolomic data mining. Nature Chemical Biology 2021, 17: 363-368. PMID: 33589842, PMCID: PMC7987574, DOI: 10.1038/s41589-020-00724-z.
- Dual Targeting of v-ATPase and mTORC1 Signaling Disarms Multidrug-Resistant CancersTurocy T, Crawford JM. Dual Targeting of v-ATPase and mTORC1 Signaling Disarms Multidrug-Resistant Cancers. Cell Chemical Biology 2020, 27: 1329-1331. PMID: 33217311, DOI: 10.1016/j.chembiol.2020.10.013.
- Sulfamethoxazole drug stress upregulates antioxidant immunomodulatory metabolites in Escherichia coliPark HB, Wei Z, Oh J, Xu H, Kim CS, Wang R, Wyche TP, Piizzi G, Flavell RA, Crawford JM. Sulfamethoxazole drug stress upregulates antioxidant immunomodulatory metabolites in Escherichia coli. Nature Microbiology 2020, 5: 1319-1329. PMID: 32719505, PMCID: PMC7581551, DOI: 10.1038/s41564-020-0763-4.
- Phylogenetic and physiological signals in metazoan fossil biomoleculesWiemann J, Crawford JM, Briggs DEG. Phylogenetic and physiological signals in metazoan fossil biomolecules. Science Advances 2020, 6: eaba6883. PMID: 32832604, PMCID: PMC7439315, DOI: 10.1126/sciadv.aba6883.
- Phylogenetic and physiological signals in metazoan fossil biomolecules.Wiemann J, Crawford JM, Briggs DEG. Phylogenetic and physiological signals in metazoan fossil biomolecules. Science Advances 2020, 6 PMID: 32937536, DOI: 10.1126/sciadv.aba6883.
- Structure and bioactivity of colibactinWernke KM, Xue M, Tirla A, Kim CS, Crawford JM, Herzon SB. Structure and bioactivity of colibactin. Bioorganic & Medicinal Chemistry Letters 2020, 30: 127280. PMID: 32527463, PMCID: PMC7309967, DOI: 10.1016/j.bmcl.2020.127280.
- Dimeric Stilbene Antibiotics Target the Bacterial Cell Wall in Drug-Resistant Gram-Positive PathogensGoddard TN, Patel J, Park HB, Crawford JM. Dimeric Stilbene Antibiotics Target the Bacterial Cell Wall in Drug-Resistant Gram-Positive Pathogens. Biochemistry 2020, 59: 1966-1971. PMID: 32410442, DOI: 10.1021/acs.biochem.0c00213.
- A DNA Repair Inhibitor Isolated from an Ecuadorian Fungal Endophyte Exhibits Synthetic Lethality in PTEN-Deficient GlioblastomaAdaku N, Park HB, Spakowicz DJ, Tiwari MK, Strobel SA, Crawford JM, Rogers FA. A DNA Repair Inhibitor Isolated from an Ecuadorian Fungal Endophyte Exhibits Synthetic Lethality in PTEN-Deficient Glioblastoma. Journal Of Natural Products 2020, 83: 1899-1908. PMID: 32407116, DOI: 10.1021/acs.jnatprod.0c00012.
- Cellular Stress Upregulates Indole Signaling Metabolites in Escherichia coliKim CS, Li JH, Barco B, Park HB, Gatsios A, Damania A, Wang R, Wyche TP, Piizzi G, Clay NK, Crawford JM. Cellular Stress Upregulates Indole Signaling Metabolites in Escherichia coli. Cell Chemical Biology 2020, 27: 698-707.e7. PMID: 32243812, PMCID: PMC7306003, DOI: 10.1016/j.chembiol.2020.03.003.
- Characterization of Autoinducer‑3 Structure and Biosynthesis in E. coliKim CS, Gatsios A, Cuesta S, Lam YC, Wei Z, Chen H, Russell RM, Shine EE, Wang R, Wyche TP, Piizzi G, Flavell RA, Palm NW, Sperandio V, Crawford JM. Characterization of Autoinducer‑3 Structure and Biosynthesis in E. coli. ACS Central Science 2020, 6: 197-206. PMID: 32123737, PMCID: PMC7047286, DOI: 10.1021/acscentsci.9b01076.
- Addendum: Synthesis and reactivity of precolibactin 886Healy AR, Wernke KM, Kim CS, Lees NR, Crawford JM, Herzon SB. Addendum: Synthesis and reactivity of precolibactin 886. Nature Chemistry 2019, 11: 1167-1167. PMID: 31719668, PMCID: PMC7523535, DOI: 10.1038/s41557-019-0383-x.
- Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infectionYang J, Schleicher TR, Dong Y, Park HB, Lan J, Cresswell P, Crawford J, Dimopoulos G, Fikrig E. Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection. Journal Of Experimental Medicine 2019, 217: e20190682. PMID: 31658986, PMCID: PMC7037243, DOI: 10.1084/jem.20190682.
- Synthesis and reactivity of precolibactin 886Healy AR, Wernke KM, Kim CS, Lees NR, Crawford JM, Herzon SB. Synthesis and reactivity of precolibactin 886. Nature Chemistry 2019, 11: 890-898. PMID: 31548676, PMCID: PMC6761996, DOI: 10.1038/s41557-019-0338-2.
- An Ugi-like Biosynthetic Pathway Encodes Bombesin Receptor Subtype‑3 AgonistsOh J, Kim NY, Chen H, Palm NW, Crawford JM. An Ugi-like Biosynthetic Pathway Encodes Bombesin Receptor Subtype‑3 Agonists. Journal Of The American Chemical Society 2019, 141: 16271-16278. PMID: 31537063, DOI: 10.1021/jacs.9b04183.
- Structure elucidation of colibactin and its DNA cross-linksXue M, Kim CS, Healy AR, Wernke KM, Wang Z, Frischling MC, Shine EE, Wang W, Herzon SB, Crawford JM. Structure elucidation of colibactin and its DNA cross-links. Science 2019, 365 PMID: 31395743, PMCID: PMC6820679, DOI: 10.1126/science.aax2685.
- Bright Green Biofluorescence in Sharks Derives from Bromo-Kynurenine MetabolismPark HB, Lam YC, Gaffney JP, Weaver JC, Krivoshik SR, Hamchand R, Pieribone V, Gruber DF, Crawford JM. Bright Green Biofluorescence in Sharks Derives from Bromo-Kynurenine Metabolism. IScience 2019, 19: 1291-1336. PMID: 31402257, PMCID: PMC6831821, DOI: 10.1016/j.isci.2019.07.019.
- Bacterial Analogs of Plant Tetrahydropyridine Alkaloids Mediate Microbial Interactions in a Rhizosphere Model SystemLozano GL, Park HB, Bravo JI, Armstrong EA, Denu JM, Stabb EV, Broderick NA, Crawford JM, Handelsman J. Bacterial Analogs of Plant Tetrahydropyridine Alkaloids Mediate Microbial Interactions in a Rhizosphere Model System. Applied And Environmental Microbiology 2019, 85: e03058-18. PMID: 30877115, PMCID: PMC6498172, DOI: 10.1128/aem.03058-18.
- A Forward Chemical Genetic Screen Reveals Gut Microbiota Metabolites That Modulate Host PhysiologyChen H, Nwe PK, Yang Y, Rosen CE, Bielecka AA, Kuchroo M, Cline GW, Kruse AC, Ring AM, Crawford JM, Palm NW. A Forward Chemical Genetic Screen Reveals Gut Microbiota Metabolites That Modulate Host Physiology. Cell 2019, 177: 1217-1231.e18. PMID: 31006530, PMCID: PMC6536006, DOI: 10.1016/j.cell.2019.03.036.
- The Gut Microbiome Says NO to microRNA-Mediated Gene SilencingWei Z, Crawford JM. The Gut Microbiome Says NO to microRNA-Mediated Gene Silencing. Biochemistry 2019, 58: 2089-2090. PMID: 30951635, DOI: 10.1021/acs.biochem.9b00262.
- Introducing THOR, a Model Microbiome for Genetic Dissection of Community BehaviorLozano GL, Bravo JI, Diago M, Park HB, Hurley A, Peterson SB, Stabb EV, Crawford JM, Broderick NA, Handelsman J, Kolter R, Newton I. Introducing THOR, a Model Microbiome for Genetic Dissection of Community Behavior. MBio 2019, 10: e02846-18. PMID: 30837345, PMCID: PMC6401489, DOI: 10.1128/mbio.02846-18.
- Characterization of a Hybrid Nonribosomal Peptide–Carbohydrate Biosynthetic Pathway in Photorhabdus luminescensPerez CE, Crawford JM. Characterization of a Hybrid Nonribosomal Peptide–Carbohydrate Biosynthetic Pathway in Photorhabdus luminescens. Biochemistry 2019, 58: 1131-1140. PMID: 30694662, DOI: 10.1021/acs.biochem.8b01120.
- Model Colibactins Exhibit Human Cell Genotoxicity in the Absence of Host BacteriaShine EE, Xue M, Patel JR, Healy AR, Surovtseva YV, Herzon SB, Crawford JM. Model Colibactins Exhibit Human Cell Genotoxicity in the Absence of Host Bacteria. ACS Chemical Biology 2018, 13: 3286-3293. PMID: 30403848, PMCID: PMC7001666, DOI: 10.1021/acschembio.8b00714.
- Characterization of Natural Colibactin–Nucleobase Adducts by Tandem Mass Spectrometry and Isotopic Labeling. Support for DNA Alkylation by Cyclopropane Ring OpeningXue M, Shine E, Wang W, Crawford JM, Herzon SB. Characterization of Natural Colibactin–Nucleobase Adducts by Tandem Mass Spectrometry and Isotopic Labeling. Support for DNA Alkylation by Cyclopropane Ring Opening. Biochemistry 2018, 57: 6391-6394. PMID: 30365310, PMCID: PMC6997931, DOI: 10.1021/acs.biochem.8b01023.
- Luciferin production and luciferase transcription in the bioluminescent copepod Metridia lucensTessler M, Gaffney JP, Crawford JM, Trautman E, Gujarati NA, Alatalo P, Pieribone VA, Gruber DF. Luciferin production and luciferase transcription in the bioluminescent copepod Metridia lucens. PeerJ 2018, 6: e5506. PMID: 30233994, PMCID: PMC6140675, DOI: 10.7717/peerj.5506.
- β‑Lactam Biotransformations Activate Innate ImmunityOh J, Patel J, Park HB, Crawford JM. β‑Lactam Biotransformations Activate Innate Immunity. The Journal Of Organic Chemistry 2018, 83: 7173-7179. PMID: 29616809, DOI: 10.1021/acs.joc.8b00241.
- Discovering antibiotics from the global microbiomeLam YC, Crawford JM. Discovering antibiotics from the global microbiome. Nature Microbiology 2018, 3: 392-393. PMID: 29588534, DOI: 10.1038/s41564-018-0135-5.
- Microbiota-Regulated Outcomes of Human Cancer Immunotherapy via the PD-1/PD-L1 AxisPatel J, Crawford JM. Microbiota-Regulated Outcomes of Human Cancer Immunotherapy via the PD-1/PD-L1 Axis. Biochemistry 2018, 57: 901-903. PMID: 29350031, DOI: 10.1021/acs.biochem.7b01249.
- Functional Characterization of a Condensation Domain That Links Nonribosomal Peptide and Pteridine Biosynthetic Machineries in Photorhabdus luminescensPerez CE, Park HB, Crawford JM. Functional Characterization of a Condensation Domain That Links Nonribosomal Peptide and Pteridine Biosynthetic Machineries in Photorhabdus luminescens. Biochemistry 2018, 57: 354-361. PMID: 29111689, DOI: 10.1021/acs.biochem.7b00863.
- ClbS Is a Cyclopropane Hydrolase That Confers Colibactin ResistanceTripathi P, Shine EE, Healy AR, Kim CS, Herzon SB, Bruner SD, Crawford JM. ClbS Is a Cyclopropane Hydrolase That Confers Colibactin Resistance. Journal Of The American Chemical Society 2017, 139: 17719-17722. PMID: 29112397, PMCID: PMC6202678, DOI: 10.1021/jacs.7b09971.
- Structure and Functional Analysis of ClbQ, an Unusual Intermediate-Releasing Thioesterase from the Colibactin Biosynthetic PathwayGuntaka NS, Healy AR, Crawford JM, Herzon SB, Bruner SD. Structure and Functional Analysis of ClbQ, an Unusual Intermediate-Releasing Thioesterase from the Colibactin Biosynthetic Pathway. ACS Chemical Biology 2017, 12: 2598-2608. PMID: 28846367, PMCID: PMC5830302, DOI: 10.1021/acschembio.7b00479.
- A New Nucleoside Antibiotic Chokes Bacterial RNA PolymeraseTrautman EP, Crawford JM. A New Nucleoside Antibiotic Chokes Bacterial RNA Polymerase. Biochemistry 2017, 56: 4923-4924. PMID: 28885002, DOI: 10.1021/acs.biochem.7b00680.
- Genome mining unearths a hybrid nonribosomal peptide synthetase-like-pteridine synthase biosynthetic gene clusterPark HB, Perez CE, Barber KW, Rinehart J, Crawford JM. Genome mining unearths a hybrid nonribosomal peptide synthetase-like-pteridine synthase biosynthetic gene cluster. ELife 2017, 6: e25229. PMID: 28431213, PMCID: PMC5384830, DOI: 10.7554/elife.25229.
- Domain-Targeted Metabolomics Delineates the Heterocycle Assembly Steps of Colibactin BiosynthesisTrautman EP, Healy AR, Shine EE, Herzon SB, Crawford JM. Domain-Targeted Metabolomics Delineates the Heterocycle Assembly Steps of Colibactin Biosynthesis. Journal Of The American Chemical Society 2017, 139: 4195-4201. PMID: 28240912, PMCID: PMC5831107, DOI: 10.1021/jacs.7b00659.
- Acyl Histidines: New N‐Acyl Amides from Legionella pneumophilaTørring T, Shames SR, Cho W, Roy CR, Crawford JM. Acyl Histidines: New N‐Acyl Amides from Legionella pneumophila. ChemBioChem 2017, 18: 638-646. PMID: 28116768, PMCID: PMC5546091, DOI: 10.1002/cbic.201600618.
- Stilbene epoxidation and detoxification in a Photorhabdus luminescens-nematode symbiosisPark HB, Sampathkumar P, Perez CE, Lee JH, Tran J, Bonanno JB, Hallem EA, Almo SC, Crawford JM. Stilbene epoxidation and detoxification in a Photorhabdus luminescens-nematode symbiosis. Journal Of Biological Chemistry 2017, 292: 6680-6694. PMID: 28246174, PMCID: PMC5399116, DOI: 10.1074/jbc.m116.762542.
- Metabolite exchange between microbiome members produces compounds that influence Drosophila behaviorFischer C, Trautman EP, Crawford JM, Stabb EV, Handelsman J, Broderick NA. Metabolite exchange between microbiome members produces compounds that influence Drosophila behavior. ELife 2017, 6: e18855. PMID: 28068220, PMCID: PMC5222558, DOI: 10.7554/elife.18855.
- A Mechanistic Model for Colibactin-Induced GenotoxicityHealy AR, Nikolayevskiy H, Patel JR, Crawford JM, Herzon SB. A Mechanistic Model for Colibactin-Induced Genotoxicity. Journal Of The American Chemical Society 2016, 138: 15563-15570. PMID: 27934011, PMCID: PMC5359767, DOI: 10.1021/jacs.6b10354.
- Pyrazinone protease inhibitor metabolites from Photorhabdus luminescensPark HB, Crawford JM. Pyrazinone protease inhibitor metabolites from Photorhabdus luminescens. The Journal Of Antibiotics 2016, 69: 616-621. PMID: 27353165, PMCID: PMC5003743, DOI: 10.1038/ja.2016.79.
- Activating and Attenuating the Amicoumacin AntibioticsPark HB, Perez CE, Perry EK, Crawford JM. Activating and Attenuating the Amicoumacin Antibiotics. Molecules 2016, 21: 824. PMID: 27347911, PMCID: PMC5055758, DOI: 10.3390/molecules21070824.
- Linking Biosynthetic Gene Clusters to their Metabolites via Pathway-Targeted Molecular NetworkingTrautman EP, Crawford JM. Linking Biosynthetic Gene Clusters to their Metabolites via Pathway-Targeted Molecular Networking. Current Topics In Medicinal Chemistry 2016, 16: 1705-1716. PMID: 26456470, PMCID: PMC5055756, DOI: 10.2174/1568026616666151012111046.
- Convergent and Modular Synthesis of Candidate Precolibactins. Structural Revision of Precolibactin AHealy AR, Vizcaino MI, Crawford JM, Herzon SB. Convergent and Modular Synthesis of Candidate Precolibactins. Structural Revision of Precolibactin A. Journal Of The American Chemical Society 2016, 138: 5426-5432. PMID: 27025153, PMCID: PMC5049697, DOI: 10.1021/jacs.6b02276.
- Secondary Metabolic Pathway-Targeted MetabolomicsVizcaino MI, Crawford JM. Secondary Metabolic Pathway-Targeted Metabolomics. 2016, 1401: 175-195. PMID: 26831709, PMCID: PMC5049693, DOI: 10.1007/978-1-4939-3375-4_12.
- Lumiquinone A, an α‑Aminomalonate-Derived Aminobenzoquinone from Photorhabdus luminescensPark HB, Crawford JM. Lumiquinone A, an α‑Aminomalonate-Derived Aminobenzoquinone from Photorhabdus luminescens. Journal Of Natural Products 2015, 78: 1437-1441. PMID: 25988621, PMCID: PMC5055755, DOI: 10.1021/np500974f.
- The colibactin warhead crosslinks DNAVizcaino MI, Crawford JM. The colibactin warhead crosslinks DNA. Nature Chemistry 2015, 7: 411-417. PMID: 25901819, PMCID: PMC4499846, DOI: 10.1038/nchem.2221.
- Gut Symbionts from Distinct Hosts Exhibit Genotoxic Activity via Divergent Colibactin Biosynthesis PathwaysEngel P, Vizcaino MI, Crawford JM. Gut Symbionts from Distinct Hosts Exhibit Genotoxic Activity via Divergent Colibactin Biosynthesis Pathways. Applied And Environmental Microbiology 2014, 81: 1502-1512. PMID: 25527542, PMCID: PMC4309719, DOI: 10.1128/aem.03283-14.
- An Atypical Orphan Carbohydrate-NRPS Genomic Island Encodes a Novel Lytic TransglycosylaseGuo X, Crawford JM. An Atypical Orphan Carbohydrate-NRPS Genomic Island Encodes a Novel Lytic Transglycosylase. Cell Chemical Biology 2014, 21: 1271-1277. PMID: 25219963, PMCID: PMC4224617, DOI: 10.1016/j.chembiol.2014.07.025.
- Comparative Metabolomics and Structural Characterizations Illuminate Colibactin Pathway-Dependent Small MoleculesVizcaino MI, Engel P, Trautman E, Crawford JM. Comparative Metabolomics and Structural Characterizations Illuminate Colibactin Pathway-Dependent Small Molecules. Journal Of The American Chemical Society 2014, 136: 9244-9247. PMID: 24932672, PMCID: PMC4091280, DOI: 10.1021/ja503450q.
- Merging chemical ecology with bacterial genome mining for secondary metabolite discoveryVizcaino MI, Guo X, Crawford JM. Merging chemical ecology with bacterial genome mining for secondary metabolite discovery. Journal Of Industrial Microbiology & Biotechnology 2013, 41: 285-299. PMID: 24127069, PMCID: PMC3946945, DOI: 10.1007/s10295-013-1356-5.
- Combinatorial Domain Swaps Provide Insights into the Rules of Fungal Polyketide Synthase Programming and the Rational Synthesis of Non‐Native Aromatic ProductsVagstad AL, Newman AG, Storm PA, Belecki K, Crawford JM, Townsend CA. Combinatorial Domain Swaps Provide Insights into the Rules of Fungal Polyketide Synthase Programming and the Rational Synthesis of Non‐Native Aromatic Products. Angewandte Chemie International Edition 2013, 52: 1718-1721. PMID: 23283670, PMCID: PMC3810244, DOI: 10.1002/anie.201208550.
- A Single Promoter Inversion Switches Photorhabdus Between Pathogenic and Mutualistic StatesSomvanshi VS, Sloup RE, Crawford JM, Martin AR, Heidt AJ, Kim KS, Clardy J, Ciche TA. A Single Promoter Inversion Switches Photorhabdus Between Pathogenic and Mutualistic States. Science 2012, 337: 88-93. PMID: 22767929, PMCID: PMC4006969, DOI: 10.1126/science.1216641.
- Small molecule perimeter defense in entomopathogenic bacteriaCrawford JM, Portmann C, Zhang X, Roeffaers MB, Clardy J. Small molecule perimeter defense in entomopathogenic bacteria. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 10821-10826. PMID: 22711807, PMCID: PMC3390839, DOI: 10.1073/pnas.1201160109.
- Microbial genome mining answers longstanding biosynthetic questionsCrawford JM, Clardy J. Microbial genome mining answers longstanding biosynthetic questions. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 7589-7590. PMID: 22550177, PMCID: PMC3356616, DOI: 10.1073/pnas.1205361109.
- NRPS Substrate Promiscuity Diversifies the XenematidesCrawford JM, Portmann C, Kontnik R, Walsh CT, Clardy J. NRPS Substrate Promiscuity Diversifies the Xenematides. Organic Letters 2011, 13: 5144-5147. PMID: 21888371, PMCID: PMC3184645, DOI: 10.1021/ol2020237.
- Dihydrophenylalanine: A Prephenate-Derived Photorhabdus luminescens Antibiotic and Intermediate in Dihydrostilbene BiosynthesisCrawford JM, Mahlstedt SA, Malcolmson SJ, Clardy J, Walsh CT. Dihydrophenylalanine: A Prephenate-Derived Photorhabdus luminescens Antibiotic and Intermediate in Dihydrostilbene Biosynthesis. Cell Chemical Biology 2011, 18: 1102-1112. PMID: 21944749, PMCID: PMC3183431, DOI: 10.1016/j.chembiol.2011.07.009.
- Bacterial symbionts and natural productsCrawford JM, Clardy J. Bacterial symbionts and natural products. Chemical Communications 2011, 47: 7559-7566. PMID: 21594283, PMCID: PMC3174269, DOI: 10.1039/c1cc11574j.
- New insights into the formation of fungal aromatic polyketidesCrawford JM, Townsend CA. New insights into the formation of fungal aromatic polyketides. Nature Reviews Microbiology 2010, 8: 879-889. PMID: 21079635, PMCID: PMC3181163, DOI: 10.1038/nrmicro2465.
- Not just passing throughCrawford JM, Clardy J. Not just passing through. Nature Chemistry 2010, 2: 805-807. PMID: 20861892, DOI: 10.1038/nchem.848.
- Exploiting a Global Regulator for Small Molecule Discovery in Photorhabdus luminescensKontnik R, Crawford JM, Clardy J. Exploiting a Global Regulator for Small Molecule Discovery in Photorhabdus luminescens. ACS Chemical Biology 2010, 5: 659-665. PMID: 20524642, PMCID: PMC2912427, DOI: 10.1021/cb100117k.
- Structure and function of an iterative polyketide synthase thioesterase domain catalyzing Claisen cyclization in aflatoxin biosynthesisKorman TP, Crawford JM, Labonte JW, Newman AG, Wong J, Townsend CA, Tsai SC. Structure and function of an iterative polyketide synthase thioesterase domain catalyzing Claisen cyclization in aflatoxin biosynthesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2010, 107: 6246-6251. PMID: 20332208, PMCID: PMC2851968, DOI: 10.1073/pnas.0913531107.
- Absence of the aflatoxin biosynthesis gene, norA, allows accumulation of deoxyaflatoxin B1 in Aspergillus flavus culturesEhrlich KC, Chang P, Scharfenstein LL, Cary JW, Crawford JM, Townsend CA. Absence of the aflatoxin biosynthesis gene, norA, allows accumulation of deoxyaflatoxin B1 in Aspergillus flavus cultures. FEMS Microbiology Letters 2010, 305: 65-70. PMID: 20158523, PMCID: PMC2891446, DOI: 10.1111/j.1574-6968.2010.01914.x.
- Siderophores from Neighboring Organisms Promote the Growth of Uncultured BacteriaD'Onofrio A, Crawford JM, Stewart EJ, Witt K, Gavrish E, Epstein S, Clardy J, Lewis K. Siderophores from Neighboring Organisms Promote the Growth of Uncultured Bacteria. Cell Chemical Biology 2010, 17: 254-264. PMID: 20338517, PMCID: PMC2895992, DOI: 10.1016/j.chembiol.2010.02.010.
- Regulating Alternative Lifestyles in Entomopathogenic BacteriaCrawford JM, Kontnik R, Clardy J. Regulating Alternative Lifestyles in Entomopathogenic Bacteria. Current Biology 2010, 20: 69-74. PMID: 20022247, PMCID: PMC2821981, DOI: 10.1016/j.cub.2009.10.059.
- Structural basis for biosynthetic programming of fungal aromatic polyketide cyclizationCrawford JM, Korman TP, Labonte JW, Vagstad AL, Hill EA, Kamari-Bidkorpeh O, Tsai SC, Townsend CA. Structural basis for biosynthetic programming of fungal aromatic polyketide cyclization. Nature 2009, 461: 1139-1143. PMID: 19847268, PMCID: PMC2872118, DOI: 10.1038/nature08475.
- Production of Octaketide Polyenes by the Calicheamicin Polyketide Synthase CalE8: Implications for the Biosynthesis of Enediyne Core StructuresBelecki K, Crawford JM, Townsend CA. Production of Octaketide Polyenes by the Calicheamicin Polyketide Synthase CalE8: Implications for the Biosynthesis of Enediyne Core Structures. Journal Of The American Chemical Society 2009, 131: 12564-12566. PMID: 19689130, PMCID: PMC2760317, DOI: 10.1021/ja904391r.
- Acyl‐Carrier Protein–Phosphopantetheinyltransferase Partnerships in Fungal Fatty Acid SynthasesCrawford JM, Vagstad AL, Ehrlich KC, Udwary DW, Townsend CA. Acyl‐Carrier Protein–Phosphopantetheinyltransferase Partnerships in Fungal Fatty Acid Synthases. ChemBioChem 2008, 9: 1559-1563. PMID: 18551496, PMCID: PMC3189688, DOI: 10.1002/cbic.200700659.
- Synthetic Strategy of Nonreducing Iterative Polyketide Synthases and the Origin of the Classical “Starter‐Unit Effect”Crawford JM, Vagstad AL, Whitworth KP, Ehrlich KC, Townsend CA. Synthetic Strategy of Nonreducing Iterative Polyketide Synthases and the Origin of the Classical “Starter‐Unit Effect”. ChemBioChem 2008, 9: 1019-1023. PMID: 18338425, PMCID: PMC3182100, DOI: 10.1002/cbic.200700702.
- Starter unit specificity directs genome mining of polyketide synthase pathways in fungiCrawford JM, Vagstad AL, Ehrlich KC, Townsend CA. Starter unit specificity directs genome mining of polyketide synthase pathways in fungi. Bioorganic Chemistry 2008, 36: 16-22. PMID: 18215412, PMCID: PMC3200548, DOI: 10.1016/j.bioorg.2007.11.002.
- Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthaseCrawford JM, Dancy BC, Hill EA, Udwary DW, Townsend CA. Identification of a starter unit acyl-carrier protein transacylase domain in an iterative type I polyketide synthase. Proceedings Of The National Academy Of Sciences Of The United States Of America 2006, 103: 16728-16733. PMID: 17071746, PMCID: PMC1636523, DOI: 10.1073/pnas.0604112103.
- New Images Evoke FAScinating QuestionsTownsend CA, Crawford JM, Bililign T. New Images Evoke FAScinating Questions. Cell Chemical Biology 2006, 13: 349-351. PMID: 16632247, DOI: 10.1016/j.chembiol.2006.04.001.