Clemens Bergwitz, MD

Associate Professor of Medicine

Research Departments & Organizations

Internal Medicine: Diabetes Research Center | Endocrinology: Bergwitz Lab

Yale Cancer Center

Yale Center for Research on Aging (Y-Age)

Research Interests

Genetic Diseases, Inborn; Nephrocalcinosis; Phosphate Transport Proteins; Phosphorus Metabolism Disorders; Rickets; Signal Transduction

Research Summary

Our research focuses on inborn errors of phosphate metabolism and the endocrine regulation of phosphate homeostasis with emphasis on the metabolic and homeostatic effects of phosphate.

Extensive Research Description

Genetic causes of hypophosphatemia

In 2006 we identified the genetic defect underlying the childhood disorder Hereditary Hypophosphatemic Rickets with Hypercalciuria (HHRH). HHRH is caused by mutations in NaPi-IIc, a renal sodium-phosphate co-transporter, which is important to conserve phosphate in the kidney and when lost leads to hypophosphatemia and rickets. Our research goal is now to study the role of NaPi-IIc in human phosphate homeostasis and to understand the phenotypic variability of patients suffering from HHRH. For this purpose we are currently using mammalian and Xenopus oocyte expression systems to study the functional properties of the identified human NaPi-IIc mutations in vitro. Plan for the near future is to establish mouse models to study the role of NaPi-IIc in the development of renal stones in vivo. We also established international collaborations to look for NaPi-IIc mutations in new patients suffering from HHRH both to establish their molecular diagnosis and to carefully study their symptoms to see whether only some or all patients are at risk for developing kidney stones.

Metabolic and homeostatic effects of phosphate

A more recent research interest is in trying to understand how human and other metazoan cells sense inorganic phosphate to explain the effects of phosphate on cell metabolism (“metabolic” sensing), how phosphate feeds back to regulate the above hormonal systems (“homeostatic” sensing) and whether the “metabolic” and the “homeostatic” sensor use the same or different signal transduction cascades.

For this purpose we have performed a genome-wide Drosophila RNAi knockdown in collaboration with Stephanie Mohr, Liz Perkins and Norbert Perrimon, Harvard Medical School using phosphate-induced activation of MAPK (in vitro). The identified 103 genes, including 84 phosphate-specific genes are currently evaluated in life flies with assays for dietary phosphate toxicity, hemolymph phosphate and life span. Our goal in the next few years will be to identify mammalian systems suitable to study phosphate sensing, while further exploring Drosophila melanogaster as model organism. Relevant readouts for humans will be the homeostatic regulation of synthesis and secretion of PTH, 1,25-D, FGF23 by phosphate and it’s metabolic effects on life-span in genetic disorders such as familial hyperphosphatemic tumoral calcinosis (FHTC) and in chronic kidney disease.

Selected Publications

  • Impaired urinary osteopontin excretion in Npt2a-/- mice.

    Caballero D, Li Y, Ponsetto J, Zhu C, Bergwitz C. Impaired urinary osteopontin excretion in Npt2a-/- mice. American Journal Of Physiology. Renal Physiology 2017, 312:F77-F83. 2017

  • Hypophosphatemia promotes lower rates of muscle ATP synthesis.

    Pesta DH, Tsirigotis DN, Befroy DE, Caballero D, Jurczak MJ, Rahimi Y, Cline GW, Dufour S, Birkenfeld AL, Rothman DL, Carpenter TO, Insogna K, Petersen KF, Bergwitz C, Shulman GI. Hypophosphatemia promotes lower rates of muscle ATP synthesis. FASEB Journal : Official Publication Of The Federation Of American Societies For Experimental Biology 2016, 30:3378-3387. 2016

  • Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis.

    Dasgupta D, Wee MJ, Reyes M, Li Y, Simm PJ, Sharma A, Schlingmann KP, Janner M, Biggin A, Lazier J, Gessner M, Chrysis D, Tuchman S, Baluarte HJ, Levine MA, Tiosano D, Insogna K, Hanley DA, Carpenter TO, Ichikawa S, Hoppe B, Konrad M, Sävendahl L, Munns CF, Lee H, Jüppner H, Bergwitz C. Mutations in SLC34A3/NPT2c are associated with kidney stones and nephrocalcinosis. Journal Of The American Society Of Nephrology : JASN 2014, 25:2366-75. 2014

See list of PubMed publications

Edit this profile