Meghan Van Zandt
Associate Research Scientist in PsychiatryCards
About
Research
Publications
2025
Redundancy of the OST catalytic subunit facilitates therapeutic targeting of N-glycosylation
Baro M, Lee H, Kelley V, Lou R, Phoomak C, Politi K, Zeiss C, Van Zandt M, Contessa J. Redundancy of the OST catalytic subunit facilitates therapeutic targeting of N-glycosylation. Cell Chemical Biology 2025, 32: 839-853.e6. PMID: 40494352, DOI: 10.1016/j.chembiol.2025.05.005.Peer-Reviewed Original ResearchConceptsN-glycosylationTrafficking of cell surface receptorsInhibits N-glycosylationCell surface receptorsGlycan synthesisCatalytic subunitOligosaccharyltransferaseEnzymatic activitySurface receptorsSTT3BSTT3ACharacterized in vitroDownstream effectsLung cancer xenograftsTherapeutic targetPatient-derivedBiological activityTumor regressionCancer xenograftsSmall moleculesGrowth delayTherapeutic agentsGlycansMolecular insights into de novo small-molecule recognition by an intron RNA structure
Liu T, Xu L, Chung K, Sisto L, Hwang J, Zhang C, Van Zandt M, Pyle A. Molecular insights into de novo small-molecule recognition by an intron RNA structure. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2502425122. PMID: 40339124, PMCID: PMC12088405, DOI: 10.1073/pnas.2502425122.Peer-Reviewed Original ResearchConceptsChemical bonds specificityExperimental structure-activity relationshipsRNA-targeting ligandsIdentification of hitsStructure-activity relationshipRNA-ligand recognitionSmall molecule recognitionSmall molecule bindingMedicinal chemistryHigh-resolution cryoEM structuresMetal ionsHigh-throughput screeningLigand statesRNA structureRNA conformationSplicing inhibitorsRNA targetsCryoEM structureMolecular interactionsDruggable genomeIntronStructural biologyMolecular insightsBond specificityDynamic responseNovel Quinazoline Derivatives Inhibit Splicing of Fungal Group II Introns
Fedorova O, Luo M, Jagdmann G, Van Zandt M, Sisto L, Pyle A. Novel Quinazoline Derivatives Inhibit Splicing of Fungal Group II Introns. ACS Chemical Biology 2025, 20: 378-385. PMID: 39824511, PMCID: PMC11851433, DOI: 10.1021/acschembio.4c00631.Peer-Reviewed Original ResearchGroup II intronsRNA tertiary structureII intronsSelf-splicing group II intronsTertiary structureAntifungal activityDiscovery of small moleculesHigh-throughput screening effortsAntifungal efficacyHigh-affinity ligandsRNAIntronYeastEnhanced inhibitory activitySmall moleculesScreening methodologyCandidaInhibitory activityScreening effortsHuman healthActivityInhibitor classLigandStructureCompounds
2022
Discovery of a Series of Potent, Selective, and Orally Bioavailable Nucleoside Inhibitors of CD73 That Demonstrates In Vivo Antitumor Activity
Li J, Chen L, Billedeau R, Stanton T, Chiang J, Lee C, Li W, Steggerda S, Emberley E, Gross M, Bhupathi D, Che X, Chen J, Dang R, Huang T, Ma Y, MacKinnon A, Makkouk A, Marguier G, Neou S, Sotirovska N, Spurlock S, Zhang J, Zhang W, van Zandt M, Yuan L, Savoy J, Parlati F, Sjogren E. Discovery of a Series of Potent, Selective, and Orally Bioavailable Nucleoside Inhibitors of CD73 That Demonstrates In Vivo Antitumor Activity. Journal Of Medicinal Chemistry 2022, 66: 345-370. PMID: 36529947, DOI: 10.1021/acs.jmedchem.2c01287.Peer-Reviewed Original ResearchConceptsSuppression of CD8<sup>+</sup> T cellsCD8<sup>+</sup> T cellsAdenosine monophosphateSmall-molecule CD73 inhibitorsMouse tumor modelsEcto-5'-nucleotidaseAntitumor mechanism of actionCheckpoint inhibitorsCancer immunotherapyImmunosuppressive adenosineInhibitors of CD73Mechanism of actionT cellsCD73 activityTumor modelTumor progressionHydrolysis of adenosine monophosphateDose-dependentlyCancer patientsCD73 inhibitorsOral administrationAntitumor activityCD73CancerSerum samples