Skip to Main Content

INFORMATION FOR

David J. Carlson

PhD, DABR, FAAPM
Professor of Therapeutic Radiology; Vice Chair for Physics, Therapeutic Radiology; Director of Medical Physics, Therapeutic Radiology

Contact Information

David J. Carlson, PhD, DABR, FAAPM

Office Location

Mailing Address

  • Yale School of Medicine

    PO Box 208040

    New Haven, CT 06520-8040

    United States

Research Summary

The overall goal of my research is to develop more accurate radiobiological dose-response models that will advance biologically-guided radiation therapy (BGRT) for cancer patients. I hope to make scientific contributions to improve our basic understanding of the underlying physical and biological mechanisms that govern radiation response. Specifically, in my recent research, I have quantified the effects of the spatial pattern of energy deposition by different types of radiation on the relative biological effectiveness of x-rays, protons, and carbon ions in achieving local tumor control. I have also examined the combined effects of cellular oxygen concentration and spatial energy deposition on DNA damage formation and processing and cell death. I have a broad background in radiation physics and radiation biology. As a doctoral candidate at Purdue University, I conducted research on the mechanisms of intrinsic radiation sensitivity and examined the effects of DNA damage repair, oxygen, and radiation quality (particle LET) on biological endpoints such as double-strand break formation and cell killing. As a physics resident at Stanford University, I obtained a comprehensive understanding of the clinical application of radiation for the treatment of malignant and benign disease. I continued my research in radiobiological modeling to develop more realistic models of tumor hypoxia based on radial oxygen diffusion from tumor vasculature and the impact on radiation response. I am currently focused on (1) developing non-invasive functional imaging tools to quantify the spatial and temporal distributions of tumor hypoxia in early-stage non-small cell lung cancer and (2) implementing methods of biological optimization in heavy ion radiotherapy.

Specialized Terms: Biological optimization of radiation therapy; Tumor hypoxia and reoxygenation effects; Proton and heavy ion radiotherapy; Functional imaging; DNA damage and repair; Motion management; 4D imaging and treatment strategies; Prostate cancer; Lung cancer

Extensive Research Description

Current and Past Research Supported by:

Agency: National Institute of Health (NIH)
ID #: 3UM1CA186689 (PI: LoRusso, P.)
Project: ViKTriY Early Clinical Trials Consortium
Role: Co-investigator

Agency: American Cancer Society (ACS)
ID #: 128352-RSG-15-197-01-TBG (PI: Bindra, R.)
Project: Pre-clinical development of Mibefradil as a novel glioma radiosensitizer
Role: Co-investigator

Agency: NIH/NIAID, The Dartmouth Physically-Based Biodosimetry Center for Medical Countermeasures Against Radiation (Dart-Dose CMCR) Pilot Program
ID #: Pilot grant from U19AI1091173 (Swartz, H.)
Grant Name: Comparing In Vivo biodosimetry with EPR to independent physical dosimetry methods
Role: PI

Agency: Biomedical Advanced Research and Development Authority (BARDA) within the U.S. Department of Health and Human Services
ID #: Subcontract #HHSO100201100024C from Dartmouth College
Project Name
:
In Vivo biodosimetry using electron paramagnetic resonance (EPR) spectroscopy
Role: PI

Agency: Yale Comprehensive Cancer Center (YCC)
Grant Name: Non-invasive imaging of tumor hypoxia in non-small cell lung cancer patients undergoing stereotactic body radiotherapy
Role: PI

Agency: American Cancer Society (ACS)
ID #: IRG-58-012-52
Grant Name: Modeling relative biological effectiveness and oxygen effects in x-ray, proton, and carbon ion radiotherapy
Role: PI

Coauthors

Research Interests

Biophysics; DNA Damage; Lung Neoplasms; Physics; Prostatic Neoplasms; Cell Hypoxia; Radiation Oncology; Heavy Ion Radiotherapy

Selected Publications

  • A phenomenological model of proton FLASH oxygen depletion effects depending on tissue vasculature and oxygen supplyZou W, Kim H, Diffenderfer E, Carlson D, Koch C, Xiao Y, Teo B, Kim M, Metz J, Fan Y, Maity A, Koumenis C, Busch T, Wiersma R, Cengel K, Dong L. A phenomenological model of proton FLASH oxygen depletion effects depending on tissue vasculature and oxygen supply Frontiers In Oncology 2022, 12: 1004121. DOI: 10.3389/fonc.2022.1004121.
  • EPD029 FLASH OXYGEN DEPLETION EFFECTS DEPEND ON TISSUE VASCULATURE STRUCTURE: A SIMULATION STUDY ON SMALL ANIMAL PROTON FLASH EXPERIMENTZou W, Kim H, Diffenderfer E, Carlson D, Koch C, Xiao Y, Teo B, Metz J, Maity A, Koumenis C, Cengel K, Dong L. EPD029 FLASH OXYGEN DEPLETION EFFECTS DEPEND ON TISSUE VASCULATURE STRUCTURE: A SIMULATION STUDY ON SMALL ANIMAL PROTON FLASH EXPERIMENT Physica Medica 2022, 94: s73-s74. DOI: 10.1016/s1120-1797(22)01600-3.
  • PO-1070 The potential implications of proton planning technique for LET-related changes on MRIBertolet A, Abolfath R, Carlson D, Lustig R, Hill-Kayser C, Michelle A, Carabe A. PO-1070 The potential implications of proton planning technique for LET-related changes on MRI Radiotherapy And Oncology 2021, 161: s890-s892. DOI: 10.1016/s0167-8140(21)07521-6.
  • The Theoretical Benefits of a 15 Ci Ir-192 Source for HDR BrachytherapyTien C, Chen Z, Damast S, Young M, Carlson D. The Theoretical Benefits of a 15 Ci Ir-192 Source for HDR Brachytherapy Brachytherapy 2019, 18: s25. DOI: 10.1016/j.brachy.2019.04.054.
  • OC-0569 A framework for variance-based sensitivity analysis of uncertainties in proton therapyHofmaier J, Dedes G, Carlson D, Parodi K, Belka C, Kamp F. OC-0569 A framework for variance-based sensitivity analysis of uncertainties in proton therapy Radiotherapy And Oncology 2019, 133: s298-s299. DOI: 10.1016/s0167-8140(19)30989-2.
  • Analytical and mechanistic modelingMoiseenko V, Grimm J, Murphy J, Carlson D, Naqa I. Analytical and mechanistic modeling 2018, 65-83. DOI: 10.1201/9780429452659-7.
  • Deep Neural Network to Predict Local Failure Following Stereotactic Body Radiation Therapy: Integrating Imaging and Clinical Data to Predict OutcomesAneja S, Shaham U, Kumar R, Pirakitikulr N, Nath S, Yu J, Carlson D, Decker R. Deep Neural Network to Predict Local Failure Following Stereotactic Body Radiation Therapy: Integrating Imaging and Clinical Data to Predict Outcomes International Journal Of Radiation Oncology • Biology • Physics 2017, 99: s47. DOI: 10.1016/j.ijrobp.2017.06.120.
  • Extended Duration of Dilator Use Beyond 1 Year May Reduce Vaginal Stenosis After Intravaginal High-Dose-Rate BrachytherapyStahl J, Qian J, Park H, Tien C, Young M, Ratner E, Carlson D, Chen Z, Damast S. Extended Duration of Dilator Use Beyond 1 Year May Reduce Vaginal Stenosis After Intravaginal High-Dose-Rate Brachytherapy International Journal Of Radiation Oncology • Biology • Physics 2017, 99: s228. DOI: 10.1016/j.ijrobp.2017.06.561.
  • High-Dose-Rate Brachytherapy As Monotherapy for Prostate Cancer: A Meta-analysis of Biochemical Control Rates and Dose FractionationTien C, Chen Z, Carlson D. High-Dose-Rate Brachytherapy As Monotherapy for Prostate Cancer: A Meta-analysis of Biochemical Control Rates and Dose Fractionation International Journal Of Radiation Oncology • Biology • Physics 2017, 99: e621. DOI: 10.1016/j.ijrobp.2017.06.2099.
  • The Impact of Standardized Treatment Planning Guidelines on Treatment Plan QualityKelly J, Park H, Carlson D, Moran M, Wilson L, Young M, Higgins S, Guay D, Arthur G, Simmons W, Winter S, Evans S. The Impact of Standardized Treatment Planning Guidelines on Treatment Plan Quality International Journal Of Radiation Oncology • Biology • Physics 2017, 99: e556. DOI: 10.1016/j.ijrobp.2017.06.1936.
  • HDR Monotherapy in Prostate Cancer: Radiobiological Considerations When Determining Biologically Effective Dose in Clinical TrialsTien C, Carlson D, Nath R, Chen Z. HDR Monotherapy in Prostate Cancer: Radiobiological Considerations When Determining Biologically Effective Dose in Clinical Trials Brachytherapy 2017, 16: s31. DOI: 10.1016/j.brachy.2017.04.038.
  • Tanderup K, El Naqa I, Carlson DJ, Klein EE. Advances in image-guided brachytherapy [editorial]. Int. J. Radiation. Oncol. Biol. Phys. 97: 873–875 (2017).Tanderup K, El Naqa I, Carlson DJ, Klein EE. Advances in image-guided brachytherapy [editorial]. Int. J. Radiation. Oncol. Biol. Phys. 97: 873–875 (2017).
  • Kelada OJ, Carlson DJ. Tumor Hypoxia and Radiotherapy. In Tumor Hypoxia, ed. Yun Z, World Scientific Publishing, p. 1–48 (2016).Kelada OJ, Carlson DJ. Tumor Hypoxia and Radiotherapy. In Tumor Hypoxia, ed. Yun Z, World Scientific Publishing, p. 1–48 (2016).
  • Tumor Hypoxia and RadiotherapyKelada O, Carlson D. Tumor Hypoxia and Radiotherapy 2016, 1-48. DOI: 10.1142/9789813147324_0001.
  • The Impact of Cobalt-60 Source Age on Biologically Effective Dose in Stereotactic Radiosurgery ThalamotomyKann B, Yu J, Bond J, Loiselle C, Chiang V, Bindra R, Gerrard J, Carlson D. The Impact of Cobalt-60 Source Age on Biologically Effective Dose in Stereotactic Radiosurgery Thalamotomy International Journal Of Radiation Oncology • Biology • Physics 2016, 96: e563. DOI: 10.1016/j.ijrobp.2016.06.2038.
  • Fixed Cylinder Diameter for High-Dose-Rate Intravaginal Brachytherapy in Endometrial Cancer: One Size Does Not Fit AllStahl J, Kim J, Geneser S, Carlson D, Damast S. Fixed Cylinder Diameter for High-Dose-Rate Intravaginal Brachytherapy in Endometrial Cancer: One Size Does Not Fit All Brachytherapy 2016, 15: s115-s116. DOI: 10.1016/j.brachy.2016.04.187.
  • Brenner DJ, Carlson DJ. Radiobiological Principles Underlying Stereotactic Radiation Therapy. In Principles and Practice of Stereotactic Radiosurgery, 2nd edition, eds. Chin LS and Regine WF, Springer, p. 57-71 (2015).Brenner DJ, Carlson DJ. Radiobiological Principles Underlying Stereotactic Radiation Therapy. In Principles and Practice of Stereotactic Radiosurgery, 2nd edition, eds. Chin LS and Regine WF, Springer, p. 57-71 (2015).
  • Radiobiological Principles Underlying Stereotactic Radiation TherapyBrenner D, Carlson D. Radiobiological Principles Underlying Stereotactic Radiation Therapy 2015, 57-71. DOI: 10.1007/978-1-4614-8363-2_5.
  • Serial Imaging of Tumor Hypoxia in Early Stage Non-Small Cell Lung Cancer Patients Undergoing Stereotactic Body RadiotherapyKelada O, Decker R, Zheng M, Huang Y, Xia Y, Gallezot J, Liu C, Rockwell S, Carson R, Oelfke U, Carlson D. Serial Imaging of Tumor Hypoxia in Early Stage Non-Small Cell Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy International Journal Of Radiation Oncology • Biology • Physics 2014, 90: s26-s27. DOI: 10.1016/j.ijrobp.2014.05.126.
  • Predicting the Relative Biological Effectiveness of Carbon Ion Radiation Therapy Beams Using the Mechanistic Repair-Misrepair-Fixation (RMF) Model and Nuclear Fragment SpectraKamp F, Cabal G, Mairani A, Parodi K, Wilkens J, Carlson D. Predicting the Relative Biological Effectiveness of Carbon Ion Radiation Therapy Beams Using the Mechanistic Repair-Misrepair-Fixation (RMF) Model and Nuclear Fragment Spectra International Journal Of Radiation Oncology • Biology • Physics 2014, 90: s849. DOI: 10.1016/j.ijrobp.2014.05.2434.
  • WE‐G‐BRD‐06: Variation in Dynamic Positron Emission Tomography Imaging of Tumor Hypoxia in Early Stage Non‐Small Cell Lung Cancer Patients Undergoing Stereotactic Body RadiotherapyKelada O, Decker R, Zheng M, Huang Y, Xia Y, Gallezot J, Liu C, Rockwell S, Carson R, Oelfke U, Carlson D. WE‐G‐BRD‐06: Variation in Dynamic Positron Emission Tomography Imaging of Tumor Hypoxia in Early Stage Non‐Small Cell Lung Cancer Patients Undergoing Stereotactic Body Radiotherapy Medical Physics 2014, 41: 520-520. DOI: 10.1118/1.4889490.
  • Understanding the Clinical Results From Contemporary Stereotactic Radiation TherapyBrenner D, Shuryak I, Carlson D, Brown J. Understanding the Clinical Results From Contemporary Stereotactic Radiation Therapy International Journal Of Radiation Oncology • Biology • Physics 2013, 87: s182. DOI: 10.1016/j.ijrobp.2013.06.469.
  • MO‐D‐141‐01: Quantification of Tumor Hypoxia Using [18F]‐Fluoromisonidazole Positron Emission Tomography and Tracer Kinetic ModelingKelada O, Rockwell S, Carson R, Decker R, Oelfke U, Carlson D. MO‐D‐141‐01: Quantification of Tumor Hypoxia Using [18F]‐Fluoromisonidazole Positron Emission Tomography and Tracer Kinetic Modeling Medical Physics 2013, 40: 399-399. DOI: 10.1118/1.4815248.
  • TH‐F‐105‐02: Molecular Dynamics Simulation of DNA Damage Induction by Ionizing RadiationAbolfath R, Carlson D, Chen Z, Nath R. TH‐F‐105‐02: Molecular Dynamics Simulation of DNA Damage Induction by Ionizing Radiation Medical Physics 2013, 40: 552-552. DOI: 10.1118/1.4815815.
  • Carlson DJ, Chen ZJ, Ouhib Z, Hoskin P, Zaider M. Radiobiology for Brachytherapy. In Comprehensive Brachytherapy: Physical and Clinical Aspects, eds. Venselaar J, Soleimani-Meigooni A, Baltas D, Hoskin P, CRC Press, Taylor and Francis Group, p. 253-270 (2013).Carlson DJ, Chen ZJ, Ouhib Z, Hoskin P, Zaider M. Radiobiology for Brachytherapy. In Comprehensive Brachytherapy: Physical and Clinical Aspects, eds. Venselaar J, Soleimani-Meigooni A, Baltas D, Hoskin P, CRC Press, Taylor and Francis Group, p. 253-270 (2013).
  • In Reply to Song et al.Brown M, Loo B, Diehn M, Carlson D. In Reply to Song et al. International Journal Of Radiation Oncology • Biology • Physics 2011, 81: 1194. DOI: 10.1016/j.ijrobp.2011.05.023.
  • On the Use of 4DCT Derived Composite CT Images in the Planning of Stereotactic Body Radiotherapy (SBRT) for Lung TumorsChen Z, Ye J, Su F, Kim J, Picone J, Kimmett J, Carlson D, Deng J, Nath R, Decker R. On the Use of 4DCT Derived Composite CT Images in the Planning of Stereotactic Body Radiotherapy (SBRT) for Lung Tumors International Journal Of Radiation Oncology • Biology • Physics 2011, 81: s857. DOI: 10.1016/j.ijrobp.2011.06.1524.
  • Quality Assurance Comparison of Intensity Modulated Stereotactic Radiosurgery between Different Treatment Planning SystemsGuo F, Carlson D, Chen Z, Deng J, Picone J, Nath R. Quality Assurance Comparison of Intensity Modulated Stereotactic Radiosurgery between Different Treatment Planning Systems International Journal Of Radiation Oncology • Biology • Physics 2011, 81: s867. DOI: 10.1016/j.ijrobp.2011.06.1545.
  • A Mechanism-based Approach for Evaluating the Effects of Tumor Hypoxia in Charged Particle RadiotherapyCarlson D, Frese M, Yu V, Stewart R. A Mechanism-based Approach for Evaluating the Effects of Tumor Hypoxia in Charged Particle Radiotherapy International Journal Of Radiation Oncology • Biology • Physics 2011, 81: s149. DOI: 10.1016/j.ijrobp.2011.06.306.
  • In Reply to Drs. Koch and EvansBrown J, Loo B, Diehn M, Carlson D. In Reply to Drs. Koch and Evans International Journal Of Radiation Oncology • Biology • Physics 2011, 80: 1605. DOI: 10.1016/j.ijrobp.2011.03.032.
  • SU‐E‐T‐05: Biophysical Modeling Intercomparison of Proton Radiation EffectivenessCarabe‐Fernandez A, Grassberger C, Carlson D, Stewart R, Frese M, Gerweck L, Skarsgard L, Wouters B, Paganetti H. SU‐E‐T‐05: Biophysical Modeling Intercomparison of Proton Radiation Effectiveness Medical Physics 2011, 38: 3486-3486. DOI: 10.1118/1.3611955.
  • Influence of Tumor Hypoxia on Stereotactic Ablative Radiotherapy (SABR): Response to Drs. Meyer and TimmermanBrown M, Loo B, Diehn M, Carlson D. Influence of Tumor Hypoxia on Stereotactic Ablative Radiotherapy (SABR): Response to Drs. Meyer and Timmerman International Journal Of Radiation Oncology • Biology • Physics 2011, 79: 1600. DOI: 10.1016/j.ijrobp.2010.11.013.
  • Stewart RD, Park J, Carlson DJ. Isoeffect Calculations in Adaptive Radiation Therapy and Treatment Individualization. In Adaptive Radiation Therapy, a volume in a series of books on Imaging in Medical Diagnosis and Therapy, ed. X. Allen Li, CRC Press, Taylor and Francis Group, p. 105-123 (2011).Stewart RD, Park J, Carlson DJ. Isoeffect Calculations in Adaptive Radiation Therapy and Treatment Individualization. In Adaptive Radiation Therapy, a volume in a series of books on Imaging in Medical Diagnosis and Therapy, ed. X. Allen Li, CRC Press, Taylor and Francis Group, p. 105-123 (2011).
  • Gupta S, Wu X, Carlson DJ, Kolesnick R, Mohiuddin M, Pollack A, Ahmed MA. Radiobiological concepts of high-dose hypofractionated radiation therapy. In Hypofractionation: Scientific Concepts and Clinical Experiences, eds. Pollack A and Ahmed MA, LumiText Publishing, p. 19-38 (2011).Gupta S, Wu X, Carlson DJ, Kolesnick R, Mohiuddin M, Pollack A, Ahmed MA. Radiobiological concepts of high-dose hypofractionated radiation therapy. In Hypofractionation: Scientific Concepts and Clinical Experiences, eds. Pollack A and Ahmed MA, LumiText Publishing, p. 19-38 (2011).
  • A Single-isocenter Multi-segment Conformal Arc Technique for Stereotactic Body Radiotherapy (SBRT)Kim J, Decker R, Carlson D, Chang B, Nath R, Chen Z. A Single-isocenter Multi-segment Conformal Arc Technique for Stereotactic Body Radiotherapy (SBRT) International Journal Of Radiation Oncology • Biology • Physics 2010, 78: s824. DOI: 10.1016/j.ijrobp.2010.07.1908.
  • Mechanistic Modeling of the Relative Biological Effectiveness of Photon, Proton, and Carbon Ion Radiation TherapyCarlson D, Stewart R. Mechanistic Modeling of the Relative Biological Effectiveness of Photon, Proton, and Carbon Ion Radiation Therapy International Journal Of Radiation Oncology • Biology • Physics 2010, 78: s48-s49. DOI: 10.1016/j.ijrobp.2010.07.149.
  • A Serial-imaging Based 4D Dose Computation System for Prostate Implant DosimetryChen Z, Deng J, Carlson D, Roberts K, Decker R, Rockwell S, Nath R. A Serial-imaging Based 4D Dose Computation System for Prostate Implant Dosimetry International Journal Of Radiation Oncology • Biology • Physics 2009, 75: s349. DOI: 10.1016/j.ijrobp.2009.07.800.
  • Towards Temporal Optimization of Radiation Fractionation: The Kinetic Effects of Tumor Hypoxia, DNA Damage Repair, and Tumor Cell RepopulationCarlson D, Keall P, Chen Z, Stewart R, Nath R, Brown J. Towards Temporal Optimization of Radiation Fractionation: The Kinetic Effects of Tumor Hypoxia, DNA Damage Repair, and Tumor Cell Repopulation International Journal Of Radiation Oncology • Biology • Physics 2009, 75: s615-s616. DOI: 10.1016/j.ijrobp.2009.07.1407.
  • DMLC Tracking Enables Motion Management in Intensity Modulated Arc TherapyKeall P, Sawant A, Venkat R, Carlson D, Cattell H, Svatos M, Zimmerman J, Persson G, Korreman S. DMLC Tracking Enables Motion Management in Intensity Modulated Arc Therapy International Journal Of Radiation Oncology • Biology • Physics 2008, 72: s606. DOI: 10.1016/j.ijrobp.2008.06.230.
  • Biological Modeling Indices for 4D Radiation TherapyAntony J, Luxton G, Lee L, Chao M, Carlson D, Xing L. Biological Modeling Indices for 4D Radiation Therapy International Journal Of Radiation Oncology • Biology • Physics 2008, 72: s629. DOI: 10.1016/j.ijrobp.2008.06.281.
  • Dose Escalation Feasible Due to Gating in Lung Cancer PatientsLuxton G, Antony J, Loo B, Carlson D, Maxim P, Xing L. Dose Escalation Feasible Due to Gating in Lung Cancer Patients International Journal Of Radiation Oncology • Biology • Physics 2008, 72: s625. DOI: 10.1016/j.ijrobp.2008.06.272.
  • SU‐GG‐T‐509: Impact of Gating On Dose Escalation in Lung Cancer PatientsAntony J, Loo B, Carlson D, Maxim P, Luxton G, Xing L. SU‐GG‐T‐509: Impact of Gating On Dose Escalation in Lung Cancer Patients Medical Physics 2008, 35: 2842-2842. DOI: 10.1118/1.2962258.
  • Clinical Impact of 4D-CT Imaging on Lung Cancer Radiotherapy Treatment Planning and Biological ResponseAntony J, Carlson D, Keall P, Xing L. Clinical Impact of 4D-CT Imaging on Lung Cancer Radiotherapy Treatment Planning and Biological Response International Journal Of Radiation Oncology • Biology • Physics 2007, 69: s526. DOI: 10.1016/j.ijrobp.2007.07.1759.
  • TU‐FF‐A3‐04: Empirical Investigation of 3D Intrafraction Motion Management Using a Generalized Methodology for Tracking Translating, Rotating and Deforming TargetsSawant A, Keall P, Srivastava V, Venkat R, Cattell H, Povzner S, Carlson D. TU‐FF‐A3‐04: Empirical Investigation of 3D Intrafraction Motion Management Using a Generalized Methodology for Tracking Translating, Rotating and Deforming Targets Medical Physics 2007, 34: 2573-2573. DOI: 10.1118/1.2761446.