1987
A critical role for the polarization of membrane recycling in cell motility
Kupfer A, Kronebusch P, Rose J, Singer S. A critical role for the polarization of membrane recycling in cell motility. Cytoskeleton 1987, 8: 182-189. PMID: 2826018, DOI: 10.1002/cm.970080210.Peer-Reviewed Original ResearchConceptsActin cytoskeletonG proteinsMotile cellsCell migrationTemperature-sensitive mutantCell surface appearanceCritical rolePolarized insertionMembrane recyclingMembrane massCell motilityVesicular stomatitis virusCytochalasin DCell surfaceStomatitis virusCytoskeletonLeading edgeCellsMutantsCDNAMigrationInsertionRoleMotilityImmunofluorescence
1985
A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface.
Machamer C, Florkiewicz R, Rose J. A single N-linked oligosaccharide at either of the two normal sites is sufficient for transport of vesicular stomatitis virus G protein to the cell surface. Molecular And Cellular Biology 1985, 5: 3074-3083. PMID: 3018499, PMCID: PMC369121, DOI: 10.1128/mcb.5.11.3074.Peer-Reviewed Original ResearchConceptsCell surface expressionG proteinsGlycosylation sitesVesicular stomatitis virus G proteinCell surfaceWild-type proteinVesicular stomatitis virus glycoproteinRole of glycosylationSurface expressionSite-directed mutagenesisVirus G proteinAsparagine-linked glycansIndirect immunofluorescence microscopyIntracellular transportImmunofluorescence microscopyOligosaccharide processingProteinProteolytic breakdownVirus glycoproteinExpressionPalmitic acidCellsMutagenesisOligosaccharidesCDNAA Single N-Linked Oligosaccharide at Either of the Two Normal Sites Is Sufficient for Transport of Vesicular Stomatitis Virus G Protein to the Cell Surface
Machamer C, Florkiewicz R, Rose J. A Single N-Linked Oligosaccharide at Either of the Two Normal Sites Is Sufficient for Transport of Vesicular Stomatitis Virus G Protein to the Cell Surface. Molecular And Cellular Biology 1985, 5: 3074-3083. DOI: 10.1128/mcb.5.11.3074-3083.1985.Peer-Reviewed Original ResearchCell surface expressionG proteinsGlycosylation sitesVesicular stomatitis virus G proteinCell surfaceWild-type proteinVesicular stomatitis virus glycoproteinRole of glycosylationSurface expressionSite-directed mutagenesisVirus G proteinAsparagine-linked glycansIndirect immunofluorescence microscopyIntracellular transportImmunofluorescence microscopyOligosaccharide processingProteinProteolytic breakdownVirus glycoproteinExpressionPalmitic acidCellsMutagenesisOligosaccharidesCDNA