Michael Murrell
Associate Professor TenureCards
About
Research
Publications
2024
Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model
Sakamoto R, Murrell M. Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model. Nature Communications 2024, 15: 9731. PMID: 39523366, PMCID: PMC11551154, DOI: 10.1038/s41467-024-53228-y.Peer-Reviewed Original ResearchConceptsMyosin-induced stressContractile ring assemblyCell division mechanismActin filamentsActin cortexCleavage furrowDivision planeActomyosin flowsGiant unilamellar vesiclesRing assemblyCell divisionMyosin activityContractile ring-like structureShape changesRing-like structureDivision mechanismEnergetic costSymmetric divisionActinRing-like formationCell modelUnilamellar vesiclesIn vitro modelFurrowCellsEnergy partitioning in the cell cortex
Chen S, Seara D, Michaud A, Kim S, Bement W, Murrell M. Energy partitioning in the cell cortex. Nature Physics 2024, 20: 1824-1832. DOI: 10.1038/s41567-024-02626-6.Peer-Reviewed Original ResearchCell cortexEntropy production rateGAP expressionCortical actin filamentsRho GTPase pathwayGTPase pathwayMyosin IIActin filamentsDiversity patternsEnergy partitioningRhoOnsager reciprocityCell phenotypeProtein expressionThermodynamic equilibriumCellsSpiral travelling waveProduction rateTemporal dynamicsLiving systemsActinEnergyWavePhenotypeActivityComposite branched and linear F-actin maximize myosin-induced membrane shape changes in a biomimetic cell model
Sakamoto R, Murrell M. Composite branched and linear F-actin maximize myosin-induced membrane shape changes in a biomimetic cell model. Communications Biology 2024, 7: 840. PMID: 38987288, PMCID: PMC11236970, DOI: 10.1038/s42003-024-06528-4.Peer-Reviewed Original ResearchConceptsF-actin networkF-actinF-actin architectureMembrane shape changesCell shape changesActivity of myosinInduce membrane deformationActomyosin contractilityShape changesActin cortexActomyosin cortexGiant unilamellar vesiclesActinMembrane deformationUnilamellar vesiclesCell modelNo-slip boundariesForce generationActomyosinMyosinVesiclesForce transmissionActive tension and membrane friction mediate cortical flows and blebbing in a model actomyosin cortex
Sakamoto R, Murrell M. Active tension and membrane friction mediate cortical flows and blebbing in a model actomyosin cortex. Physical Review Research 2024, 6: 033024. DOI: 10.1103/physrevresearch.6.033024.Peer-Reviewed Original ResearchActomyosin cortexCell membraneActin cytoskeletonCortical flowMembrane blebbingCell divisionCell migrationCytoskeletonActomyosinBiological phenomenaMembrane bulgesBlebsCellsMembraneViscoelastic fluidMechanical responseElastic stressesStress yieldActinUbiquitous structuresApoptosisMechanical stressMembrane elasticityPhysical behaviorGrowth‐induced collective bending and kinetic trapping of cytoskeletal filaments
Banerjee D, Freedman S, Murrell M, Banerjee S. Growth‐induced collective bending and kinetic trapping of cytoskeletal filaments. Cytoskeleton 2024, 81: 409-419. PMID: 38775207, DOI: 10.1002/cm.21877.Peer-Reviewed Original ResearchActin networkFilamentous growthActin filamentsTurnover of actin filamentsActin filament growthKinetic trapsActin poolFilament polymerizationActin cortexCytoskeletal filamentsSubunit poolActinFilamentsSubunitConsequence of growthFilament mechanismNematic defectsCrowded environmentLong-livedGrowthPoolAbundanceBending patternCellsTurnoverConfinement induces internal flows in adherent cell aggregates
Yousafzai M, Amiri S, Sun Z, Pahlavan , Murrell M. Confinement induces internal flows in adherent cell aggregates. Journal Of The Royal Society Interface 2024, 21: 20240105. PMID: 38774959, PMCID: PMC11285874, DOI: 10.1098/rsif.2024.0105.Peer-Reviewed Original ResearchElastocapillary effects determine early matrix deformation by glioblastoma cell spheroids
Ang I, Yousafzai M, Yadav V, Mohler K, Rinehart J, Bouklas N, Murrell M. Elastocapillary effects determine early matrix deformation by glioblastoma cell spheroids. APL Bioengineering 2024, 8: 026109. PMID: 38706957, PMCID: PMC11069407, DOI: 10.1063/5.0191765.Peer-Reviewed Original ResearchF-actin architecture determines the conversion of chemical energy into mechanical work
Sakamoto R, Murrell M. F-actin architecture determines the conversion of chemical energy into mechanical work. Nature Communications 2024, 15: 3444. PMID: 38658549, PMCID: PMC11043346, DOI: 10.1038/s41467-024-47593-x.Peer-Reviewed Original ResearchConceptsF-actin architectureF-actinATP consumption rateF-actin bundlesIn vitro reconstitutionDynamic cellular processesHigher ATP consumptionActin cytoskeletonFilamentous actinMyosin motorsCellular processesATP hydrolysisPurified componentsAdenosine triphosphateForce generationConversion of chemical energyATP consumptionConsumption rateActinChemical energyMyosinNetwork contractionCytoskeletonEnergetic principlesHydrolysis
2023
Cofilin-mediated actin filament network flexibility facilitates 2D to 3D actomyosin shape change
Sun Z, Yadav V, Amiri S, Cao W, De La Cruz E, Murrell M. Cofilin-mediated actin filament network flexibility facilitates 2D to 3D actomyosin shape change. European Journal Of Cell Biology 2023, 103: 151379. PMID: 38168598, DOI: 10.1016/j.ejcb.2023.151379.Peer-Reviewed Original ResearchActin and Microtubules Position Stress Granules
Böddeker T, Rusch A, Leeners K, Murrell M, Dufresne E. Actin and Microtubules Position Stress Granules. PRX Life 2023, 1: 023010. DOI: 10.1103/prxlife.1.023010.Peer-Reviewed Original Research