Mark Robinson, PhD
Associate Research ScientistCards
About
Research
Publications
2025
Polyunsaturated fatty acids control lipid membrane dynamics and ferroptosis sensitivity in B-cell lymphoma
Leveille E, Bramson E, Robinson M, Perez C, Chahal O, Bertomeu T, Chatr-aryamontri A, Kothari S, Gupta K, Karatekin E, Xiao G, Lancaster G, Murphy A, Conrad M, Müschen M. Polyunsaturated fatty acids control lipid membrane dynamics and ferroptosis sensitivity in B-cell lymphoma. Blood 2025, 146: 5094-5094. DOI: 10.1182/blood-2025-5094.Peer-Reviewed Original ResearchB-cell lymphomaB cellsSensitivity to ferroptosisDegradation tagCompetitive fitnessPUFA metabolismB-cell lymphoma cell linesFerroptosis inducersSensitivity of cancer cellsTherapy-resistant tumorsB-cell malignanciesB cell-dependentExpression of ACSL3Clinical trial cohortDriving metabolismFerroptosis sensitivityB cell activationVulnerability to ferroptosisLymphoma cell linesIron-dependent peroxidationCell deathDrug sensitivity dataMembrane dynamicsSelection pressureConsistent with lossAlternating cycles of quiescent and proliferative cell states determine stemness and leukemia-initiation capacity in acute lymphoblastic leukemia
Cheng Z, Kume K, Shi R, Robinson M, Cosgun K, Bao Y, Chen S, Mishra P, Bewersdorf J, Xu M, Müschen M. Alternating cycles of quiescent and proliferative cell states determine stemness and leukemia-initiation capacity in acute lymphoblastic leukemia. Blood 2025, 146: 1485-1485. DOI: 10.1182/blood-2025-1485.Peer-Reviewed Original ResearchLeukemia-initiating cellsB-ALL cellsCell state transitionsAcute myeloid leukemiaLeukemia-initiating cell populationProliferative cell statesCell statesB-ALLFusion proteinTime-lapse imagingDry massKnockin alleleClonal hierarchyIntegrated ChIP-seqCatabolic metabolismMultiplex immunofluorescenceGene expression studiesDrug resistanceCellular dry massTime-lapse fluorescence imagingQuiescent cell stateLeukemia-initiating potentialChIP-seqDegron systemProtein synthesis pathwaysTargeted hyperactivation of oncogenic STAT5-signaling in acute lymphoblastic leukemia
Kume K, Cheng Z, Lin J, Xu L, Xiao G, Robinson M, Leveille E, Bramson E, Cosgun K, Geng H, Heinäniemi M, Graeber T, Abkowitz J, Chi H, Alexander W, Chiarle R, Leonard W, Müschen M. Targeted hyperactivation of oncogenic STAT5-signaling in acute lymphoblastic leukemia. Blood 2025, 146: 433-433. DOI: 10.1182/blood-2025-433.Peer-Reviewed Original ResearchLoss-of-functionB-ALL cellsLeukemia-initiating capacityCell statesER stressColony formationLoss of colony formationLeukemia cellsAmino acid metabolic pathwaysActivation of MYCExpression levelsGenetic deletionProliferative cell statesTime-lapse experimentsInhibitors of JAK2Oncogenic tyrosine kinasesActivation of BCL6Autophagosome biogenesisPtdEtn synthesisBCL6 target genesTCA cycleGene setsSTAT5 regulationCell-statesTranscriptional programsIdentification of NAE1-dependent β-catenin neddylation as selective vulnerability in B-cell malignancies
Cosgun K, Ito T, Robinson M, Fera E, Oulghazi S, Feng Y, Forward J, Yin T, Xin G, Chen S, Davids M, Müschen M. Identification of NAE1-dependent β-catenin neddylation as selective vulnerability in B-cell malignancies. Blood 2025, 146: 5042. DOI: 10.1182/blood-2025-5042.Peer-Reviewed Original ResearchB cell selectionCre-mediated deletionCell deathB-cell malignanciesAcute cell deathProteasomal degradationProtein degradationNedd8-E3 ligaseLoss of colony formationMantle cell lymphomaB-cell tumorsB-ALLCRISPR-KO screensCRISPR-mediated deletionB cellsPre-B cell transitionPro- to pre-B cell transitionNext generation sequencingNEDD8-activating enzymeB-cateninB cell developmentHematopoietic reconstitutionCell lymphomaExpression of MYCLeukemia-initiating abilityHarnessing repressive LEF1/β-catenin complexes to overcome drug resistance in chronic lymphocytic leukemia
Cosgun K, Ito T, Robinson M, Fera E, Mishra P, Forward J, Iyer P, Wang L, Vaisitti T, Deaglio S, Buchner M, Xue H, Davids M, Müschen M. Harnessing repressive LEF1/β-catenin complexes to overcome drug resistance in chronic lymphocytic leukemia. Blood 2025, 146: 5659-5659. DOI: 10.1182/blood-2025-5659.Peer-Reviewed Original ResearchNuclear translocation of b-cateninCLL cellsB cellsSolid tumorsB-cateninGSK3B inhibitionRichter transformationLEF1 expressionCLL developmentH3K27ac signalPK/PD profilesClinical trialsNuclear translocationB cell-specific deletionMYC enhancer regionChronic lymphocytic leukemiaB-cell leukemiaMyc repressionNormal B cellsCell deathExpression of MYCWnt/b-catenin signalingIntracellular FACSLymphocytic leukemiaMechanism of actionPIEZO1 Overexpression in Hereditary Hemorrhagic Telangiectasia Arteriovenous Malformations
Park H, Lee S, Furtado J, Robinson M, Antaya R, Oh S, Hong Y, Schwartz M, Young L, Eichmann A. PIEZO1 Overexpression in Hereditary Hemorrhagic Telangiectasia Arteriovenous Malformations. Circulation 2025, 152: 599-615. PMID: 40665909, PMCID: PMC12270330, DOI: 10.1161/circulationaha.124.073630.Peer-Reviewed Original ResearchConceptsArteriovenous malformation formationType 2 hereditary hemorrhagic telangiectasiaArteriovenous malformationsHemorrhagic telangiectasiaKnockout miceSingle-cell RNA sequencingActivin receptor-like kinase 1Knockout mouse retinaHereditary hemorrhagic telangiectasiaMolecular hallmarksEndothelial nitric oxide synthaseReceptor-like kinase 1Piezo1 inhibitionNitric oxide synthaseMechanosensitive ion channel Piezo1Mutant endothelial cellsTelangiectasia lesionsMouse retinaVascular disordersSignal alterationsPharmacological inhibitionLoss-of-function variationPiezo1 expressionIon channel Piezo1Oxide synthase
2024
Interplay between Netrin-1 and Norrin controls arteriovenous zonation of blood–retina barrier integrity
Furtado J, Geraldo L, Leser F, Bartkowiak B, Poulet M, Park H, Robinson M, Pibouin-Fragner L, Eichmann A, Boyé K. Interplay between Netrin-1 and Norrin controls arteriovenous zonation of blood–retina barrier integrity. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2408674121. PMID: 39693351, PMCID: PMC11670198, DOI: 10.1073/pnas.2408674121.Peer-Reviewed Original ResearchConceptsBlood-retina barrierBlood-retina barrier integrityGene expressionScRNA-seqEndothelial cellsNetrin-1 receptor UNC5BNetrin-1Cell gene expression programsSingle-cell RNA sequencingDevelopment of retinal diseasesWnt signaling componentsGene expression programsTight junction proteinsMutant endothelial cellsScaffold proteinTranscriptional activityLoss of functionRNA sequencingRetinal arteriolesRetina endothelial cellsRetinal diseasesHomologue 1Expression programsReceptor UNC5BEndothelial subtypesMonoclonal antibodies that block Roundabout 1 and 2 signaling target pathological ocular neovascularization through myeloid cells
Geraldo L, Xu Y, Mouthon G, Furtado J, Leser F, Blazer L, Adams J, Zhang S, Zheng L, Song E, Robinson M, Thomas J, Sidhu S, Eichmann A. Monoclonal antibodies that block Roundabout 1 and 2 signaling target pathological ocular neovascularization through myeloid cells. Science Translational Medicine 2024, 16: eadn8388. PMID: 39565875, PMCID: PMC11822886, DOI: 10.1126/scitranslmed.adn8388.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibodies, MonoclonalCorneal NeovascularizationDisease Models, AnimalHumansIntercellular Signaling Peptides and ProteinsMiceMice, Inbred C57BLMyeloid CellsNeovascularization, PathologicNerve Tissue ProteinsReceptors, ImmunologicRetinaRetinal NeovascularizationSignal TransductionConceptsOxygen-induced retinopathyPathological ocular neovascularizationCorneal neovascularizationMyeloid cellsOcular neovascularizationHeterogeneous population of myeloid cellsBlood-retina barrier integrityPopulation of myeloid cellsActivation of myeloid cellsMonoclonal antibodiesOcular neovascular diseasesBlinding eye diseaseHuman monoclonal antibodyExtracellular domainMouse model in vivoModel in vivoMAb treatmentMyeloid populationsOIR retinasNeovascular diseasesVision lossEye diseaseSlit-RoboSlit-Robo signalingBlocking antibodiesIdentification of Nuclear NAD+ Salvage As a Therapeutic Vulnerability in B-Lymphoid Malignancies
Robinson M, Li Q, Zhang C, Zhan C, Cheng Z, Kume K, Cosgun K, Kothari S, Agadzhanian N, Nakada D, Müschen M. Identification of Nuclear NAD+ Salvage As a Therapeutic Vulnerability in B-Lymphoid Malignancies. Blood 2024, 144: 4164-4164. DOI: 10.1182/blood-2024-205729.Peer-Reviewed Original ResearchB-ALL cell linesB-ALLB cellsCell linesTherapeutic vulnerabilitiesGene dependenciesNAD+ synthesisMature B-cell lymphomasElimination of B cellsTreatment of B-ALLNAD+ salvageChemotherapy-based regimensEffects of NAMPT inhibitionB-cell depletionB-cell lymphomaB-lymphoid malignanciesB-ALL cellsNAMPT inhibitorsInhibition of NAMPTATP-utilizing enzymesNAD+ salvage pathwayDrug repurposing platformNAD biosynthetic pathwayNear-complete ablationDe novo pathwayIdentification of High-Efficiency β-Catenin Protein Degradation As Critical Vulnerability in B-Cell Malignancies
Cosgun K, Robinson M, Agadzhanian N, Cheng Z, Oulghazi S, Berning P, Fonseca-Arce D, Kume K, Fontaine J, Chan L, Lee J, Yu F, Qian Z, Song J, Chan W, Chen J, Taketo M, Schjerven H, Müschen M. Identification of High-Efficiency β-Catenin Protein Degradation As Critical Vulnerability in B-Cell Malignancies. Blood 2024, 144: 4125-4125. DOI: 10.1182/blood-2024-208125.Peer-Reviewed Original ResearchProtein degradation pathwaysB-ALL cellsProtein degradationRepression of MYCTranscriptional activity of MYCCell deathAcute cell deathLoss of colony formationChIP-seq analysisActive enhancer marksB-cell malignanciesSuper-enhancer regionsActivation of MYCIkaros transcription factorB-lymphoid cellsCell linesB cell identityDefective protein degradationB-cateninNon-lymphoid cell linesDegradation pathwayMantle cell lymphomaProtein levelsB-ALLChIP-seq
Academic Achievements & Community Involvement
News
Get In Touch
Contacts
Academic Office Number
Mailing Address
Müschen Lab
300 George Street, 6th Floor, CMCO
New Haven, CT 06511
United States