Euisoon Park
Associate Research ScientistCards
About
Research
Publications
2025
ORF3 Gene of Porcine Epidemic Diarrhea Virus Causes Nuclear and Morphological Distortions with Associated Cell Death
Kamau N, Rho J, Park E, Yu J, Yu J, Ferrara G, Shin H. ORF3 Gene of Porcine Epidemic Diarrhea Virus Causes Nuclear and Morphological Distortions with Associated Cell Death. Viruses 2025, 17: 1468. PMID: 41305489, PMCID: PMC12656750, DOI: 10.3390/v17111468.Peer-Reviewed Original ResearchConceptsCell deathORF3 geneN-terminal domainAssociated cell deathPEGFP-C1 vectorORF3 expressionMechanistic interactionsTruncation mutantsORF3Transmembrane domainChromosome condensationCytoplasmic localizationViral virulenceGene expressionPEGFP-C1GenesMorphological distortionCell morphologyC expressionNuclear damagePEDVNative cellsProteinCellsLethalityType-I IFNs induce GBPs and lysosomal defense in hepatocytes to control malaria 2178
Marques-da-Silva C, Schmidt-Silva C, Bowers C, Appiah N, Charles-Chess E, Shiau J, Park E, Yuan Z, Kim B, Kyle D, Harty J, MacMicking J, Kurup S. Type-I IFNs induce GBPs and lysosomal defense in hepatocytes to control malaria 2178. The Journal Of Immunology 2025, 214 DOI: 10.1093/jimmun/vkaf283.131.Peer-Reviewed Original ResearchGuanylate-binding proteinsPlasmodium infectionLiver-stage malariaParasitophorous vacuoleEssential in vivoNon-immune cellsInfected host cellsNADPH oxidase 2Caspase-1 inflammasomeType I interferonClinical malariaAntimicrobial programLysosomal fusionPlasmodium parasitesHost cellsProtective immunityMalariaPlasmodiumGenetic inhibitionImmunization programsInterferonCaspase-1Immune circuitsMouse hepatocytesHepatocytesType I interferons induce guanylate-binding proteins and lysosomal defense in hepatocytes to control malaria
Marques-da-Silva C, Schmidt-Silva C, Bowers C, Charles-Chess N, Samuel C, Shiau J, Park E, Yuan Z, Kim B, Kyle D, Harty J, MacMicking J, Kurup S. Type I interferons induce guanylate-binding proteins and lysosomal defense in hepatocytes to control malaria. Cell Host & Microbe 2025, 33: 529-544.e9. PMID: 40168996, DOI: 10.1016/j.chom.2025.03.008.Peer-Reviewed Original ResearchConceptsGuanylate-binding proteinsType I interferonPlasmodium infectionI interferonParasitophorous vacuoleLiver-stage malariaNon-immune cellsInfected host cellsCaspase-1 inflammasomeNADPH oxidase 2Clinical malariaControl malariaLysosomal fusionAntimicrobial programPlasmodium parasitesHost cellsInfected erythrocytesProtective immunityMalariaPlasmodiumGenetic inhibitionCaspase-1Immunization programsImmune circuitsMouse hepatocytes
2024
Corrigendum to 'Strenuous expression of porcine epidemic diarrhea virus ORF3 protein suggests host resistance' [Vet. Microbiol., Vol. 297, Oct. 2024, 110193]
Kamau A, Yu J, Park E, Rho J, Hong E, Shin H. Corrigendum to 'Strenuous expression of porcine epidemic diarrhea virus ORF3 protein suggests host resistance' [Vet. Microbiol., Vol. 297, Oct. 2024, 110193]. Veterinary Microbiology 2024, 298: 110253. PMID: 39289106, DOI: 10.1016/j.vetmic.2024.110253.Peer-Reviewed Original ResearchNative architecture of a human GBP1 defense complex for cell-autonomous immunity to infection
Zhu S, Bradfield C, Maminska A, Park E, Kim B, Kumar P, Huang S, Kim M, Zhang Y, Bewersdorf J, MacMicking J. Native architecture of a human GBP1 defense complex for cell-autonomous immunity to infection. Science 2024, 383: eabm9903-eabm9903. PMID: 38422126, PMCID: PMC12091997, DOI: 10.1126/science.abm9903.Peer-Reviewed Original ResearchConceptsGuanylate-binding proteinsCaspase-4Surface of Gram-negative bacteriaGuanosine triphosphate hydrolysisImmunity to infectionInnate immunity to infectionCryo-electron tomographyGram-negative bacteriaImmunity proteinSignaling platformsMembrane insertionHuman cellsNative structureCombat infectionsLipopolysaccharide releaseGasdermin DExtended conformationLiving organismsProteinDefense complexCellsNative architectureGBP1BacteriaInfection
2023
PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection
Xu D, Jiang W, Wu L, Gaudet R, Park E, Su M, Cheppali S, Cheemarla N, Kumar P, Uchil P, Grover J, Foxman E, Brown C, Stansfeld P, Bewersdorf J, Mothes W, Karatekin E, Wilen C, MacMicking J. PLSCR1 is a cell-autonomous defence factor against SARS-CoV-2 infection. Nature 2023, 619: 819-827. PMID: 37438530, PMCID: PMC10371867, DOI: 10.1038/s41586-023-06322-y.Peer-Reviewed Original ResearchConceptsC-terminal β-barrel domainSpike-mediated fusionCell-autonomous defenseLarge-scale exome sequencingΒ-barrel domainGenome-wide CRISPRSARS-CoV-2 infectionHost cell cytosolScramblase activityPhospholipid scramblaseLive SARS-CoV-2 infectionHuman lung epitheliumPLSCR1SARS-CoV-2 USASingle-molecule switchingSARS-CoV-2 variantsExome sequencingHuman populationRestriction factorsViral RNANew SARS-CoV-2 variantsSARS-CoV-2Robust activityLung epitheliumDefense factorsTDAG51 promotes transcription factor FoxO1 activity during LPS‐induced inflammatory responses
Park E, Jeon H, Lee N, Yu J, Park H, Satoh T, Akira S, Furuyama T, Lee C, Choi J, Rho J. TDAG51 promotes transcription factor FoxO1 activity during LPS‐induced inflammatory responses. The EMBO Journal 2023, 42: embj2022111867. PMID: 37203866, PMCID: PMC10308371, DOI: 10.15252/embj.2022111867.Peer-Reviewed Original ResearchConceptsBone marrow-derived macrophagesInflammatory mediator productionInflammatory responseMediator productionTranscription factor FOXO1Lethal shockLPS-induced inflammatory responseSerum proinflammatory cytokine levelsToll-like receptor (TLR)-mediated inflammatory responsesFoxO1 activitySystemic inflammatory responseProinflammatory cytokine levelsMarrow-derived macrophagesTLR2/4 signaling pathwayFoxO1 nuclear accumulationT cellsCytokine levelsLipopolysaccharide (LPS)-induced inflammatory responsesTDAG51 deficiencyDouble deficiencyLPS-induced inflammatory mediator productionLPS stimulationInnate immunityCytoplasmic translocationLPS
2021
Selenoprotein W ensures physiological bone remodeling by preventing hyperactivity of osteoclasts
Kim H, Lee K, Kim J, Kim M, Kim J, Lee H, Chung Y, Shin H, Kim T, Park E, Rho J, Lee S, Kim N, Lee S, Choi Y, Jeong D. Selenoprotein W ensures physiological bone remodeling by preventing hyperactivity of osteoclasts. Nature Communications 2021, 12: 2258. PMID: 33859201, PMCID: PMC8050258, DOI: 10.1038/s41467-021-22565-7.Peer-Reviewed Original ResearchConceptsSelenoprotein WCell-cell fusionRNA sequencing analysisProfile of receptor activationOsteoclast differentiationNuclear factor of activated T cells cytoplasmic 1Bone remodelingBone mass phenotypeOsteoclastogenesis in vitroNuclear translocation of NF-kBTranslocation of NF-kBPhysiological bone remodelingBlocks osteoporosisNuclear translocationNuclear factorOsteoclastogenic genesMechanism of actionMass phenotypeBone metabolismBone resorptionReceptor activationOsteoclast maturationCytoplasmic 1Osteoclast formationNF-kB
2020
T-Cell Death-Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis
Kim S, Lee N, Park E, Yun H, Ha T, Jeon H, Yu J, Choi S, Shin B, Yu J, Dal Rhee S, Choi Y, Rho J. T-Cell Death-Associated Gene 51 Is a Novel Negative Regulator of PPARγ That Inhibits PPARγ-RXRα Heterodimer Formation in Adipogenesis. Molecules And Cells 2020, 44: 1-12. PMID: 33335079, PMCID: PMC7854182, DOI: 10.14348/molcells.2020.0143.Peer-Reviewed Original ResearchConceptsLigand-independent mannerRepeat domainRetinoid X receptorBinding domainNegative regulatorHeterodimer formationEarly stage of adipogenic differentiationActivation function-2 domainPleckstrin homology-likeT-cell death-associated geneDNA-binding domainDeletion mutant analysisDeath-associated genesStage of adipogenic differentiationLigand-binding domainMutant analysisGlutamine repeatsCell fateTranscriptional activityPeroxisome proliferator-activated receptor gTDAG51 expressionAdipocyte differentiationHeterodimer complexTDAG51Adipogenic cell fateGuanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms
Wandel MP, Kim BH, Park ES, Boyle KB, Nayak K, Lagrange B, Herod A, Henry T, Zilbauer M, Rohde J, MacMicking JD, Randow F. Guanylate-binding proteins convert cytosolic bacteria into caspase-4 signaling platforms. Nature Immunology 2020, 21: 880-891. PMID: 32541830, PMCID: PMC7381384, DOI: 10.1038/s41590-020-0697-2.Peer-Reviewed Original ResearchConceptsGuanylate-binding proteinsCaspase-4 activationCaspase-4Human caspase-4Pyroptotic cell deathGram-negative bacteriaCytosolic bacteriaReplicative nicheEvolutionary evidenceIntracellular bacteriaCell deathMultiple antagonistsNeighboring cellsCaspase-11BacteriaAntibacterial defenseBacterial challengeGasderminShigella flexneriProteinDependent pyroptosisActivationPathwayBacterial lipopolysaccharideGBP2