Patrick Gallagher, MD, BS
Professor Emeritus of PediatricsCards
Additional Titles
Director, Yale Center for Blood Disorders
Contact Info
About
Copy Link
Titles
Professor Emeritus of Pediatrics
Director, Yale Center for Blood Disorders
Appointments
Neonatal-Perinatal Medicine
EmeritusPrimary
Other Departments & Organizations
- Gallagher Lab
- Neonatal Transport Program
- Neonatal-Perinatal Medicine
- Newborn Special Care Unit
- Pathology and Molecular Medicine
- Pathology Research
- Pediatrics
- Rheumatic Diseases Research Core
- Yale Stem Cell Center
- Yale Ventures
- YCCEH
Education & Training
- Fellow - Molecular Hematology
- Yale University School of Medicine (1994)
- Fellow - Neonatal-Perinatal Medicine
- Yale University School of Medicine (1992)
- Chief Resident
- Children's Hospital Medical Center, University of Cincinnati (1989)
- Intern & Resident
- Children's Hospital Medical Center, University of Cincinnati (1988)
- MD
- Northeastern Ohio University (1985)
- BS
- Ohio State University (1976)
Research
Copy Link
Overview
Dr. Gallagher has trained numerous undergraduate, graduate and medical students, MD and PhD postdoctoral fellows, and sabbatical faculty. Laboratory graduates hold positions throughout the world and trainees have
received awards and honors from local, regional, and national organizations. After serving as the PI on the Yale Neonatal/Perinatal Medicine T32 training grant for many years, he now participates in training grants in Genetics, Medicine, and Laboratory Medicine. He serves on the Department of Pediatrics Scholarship Oversight Committee (SOC). He has served on numerous individual SOCs as member or chair, as well as various medical and graduate school mentoring committees, PhD thesis committees, etc.
Medical Research Interests
ORCID
0000-0002-5424-0224
Research at a Glance
Yale Co-Authors
Publications Timeline
Research Interests
Vincent Schulz, PhD
Louise-Marie Dembry, MD, FACP, MS, MBA, FIDSA, BS
Diane Krause, MD, PhD
Matthew Bizzarro, MD
Joseph Craft, MD
Jesse Rinehart, PhD
Spherocytosis, Hereditary
Erythropoiesis
Elliptocytosis, Hereditary
Hydrops Fetalis
Anemia, Sickle Cell
Pyruvate Kinase
Publications
2025
A novel isoform of tensin-1 promotes actin filament assembly for efficient erythroblast enucleation
Ghosh A, Coffin M, Diaz D, Barndt S, Schulz V, Gallagher P, Lo S, Fowler V. A novel isoform of tensin-1 promotes actin filament assembly for efficient erythroblast enucleation. Blood Advances 2025, 9: 6356-6369. PMID: 41052410, DOI: 10.1182/bloodadvances.2025016100.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsConceptsF-actinFocal adhesionsTensin 1Terminal differentiationRegulation of F-actinActin-binding domainActin filament assemblyF-actin assemblyTranslation start siteN-terminal halfActin regulatory factorsErythroid terminal differentiationErythroid differentiationMolecular regulatory mechanismsSpectrin membrane skeletonTerminal erythroid differentiationSequence comparisonActin filamentsChromatin accessibilityStart siteFilament assemblyMammalian red blood cellsCell polarityProteomic dataErythroid promoterA mouse model for hemoglobin SC disease recapitulates characteristic human pathologies
Zhai J, Papizan J, Yao Y, Arnold E, Yu J, Tran T, Geiger N, Gollamudi J, Little D, Jadeja R, John J, Khalighifar A, Mayberry K, McEvoy J, Rooney R, Venkataraman K, Vu H, Zhang J, Dyer M, Gallagher P, Hyacinth H, Janke L, Martin P, Ni M, Xu J, Yen J, Zheng Y, Weiss M, Pruett-Miller S. A mouse model for hemoglobin SC disease recapitulates characteristic human pathologies. Blood Advances 2025, 9: 6220-6233. PMID: 40864227, DOI: 10.1182/bloodadvances.2025016793.Peer-Reviewed Original ResearchCitationsConceptsSickle cell diseaseLife-threatening groupB-globin geneMouse modelLack of animal modelsB-globinHemoglobin SC diseaseGroup of disordersHbSS miceHbSC diseaseGenome engineeringMouse strainsSC diseaseAnimal modelsCell diseaseMissense mutationsMouse counterpartMiceHuman pathologiesDiseaseGenesPathologyHuman AActivation of pyruvate kinase by mitapivat potentially rescues ineffective erythropoiesis in models of diamond blackfan anemia.
de Wilde J, Pozzetto Huot R, Riccardi V, Tang Y, Bertrand A, Rao R, Serra M, Taylor N, Schulz V, Gallagher P, Lipton J, Russo R, Iolascon A, Rivadeneyra L, Wind-Rotolo M, Narla M, Papoin J, De Franceschi L, Blanc L. Activation of pyruvate kinase by mitapivat potentially rescues ineffective erythropoiesis in models of diamond blackfan anemia. Blood 2025, 146: 1121-1121. DOI: 10.1182/blood-2025-1121.Peer-Reviewed Original ResearchConceptsDiamond-Blackfan anemiaRed blood cell differentiationRed blood cellsErythroid progenitor differentiationErythroid progenitorsErythroblast populationsCell countIneffective erythropoiesisCongenital bone marrow failure syndromePolychromatic erythroblastsAssociated with significant side effectsBone marrow failure syndromesRed blood cell transfusionMarrow failure syndromesFetal liver cellsEP1 to EP4Models of anemiaSignificant side effectsControl cellsModel of Diamond-Blackfan anemiaCell deathNuclear translocationVehicle-treated cellsVav-iCreDBA patientsPomalidomide downregulates FIZ1 to induce fetal hemoglobin in adult erythroid progenitors
Serra M, Hyman Z, Ashley R, Dulmovits B, Udeshi N, Carr S, Gallagher P, Narla M, Papoin J, Blanc L. Pomalidomide downregulates FIZ1 to induce fetal hemoglobin in adult erythroid progenitors. Blood 2025, 146: 612-612. DOI: 10.1182/blood-2025-612.Peer-Reviewed Original ResearchConceptsCD34+ cellsSickle cell diseaseFetal hemoglobinHbF inductionMechanism of action of IMiDsHbF regulationReactivation of fetal hemoglobinFlow cytometryPharmacological inducersAdult erythroid progenitorsF-cell populationInducers of HbFHuman bone marrow CD34Human erythropoiesisErythroid differentiationInduction of HbFTreatment of hemoglobinopathiesUpstream mediatorEx vivo erythropoiesisExpression levelsIn vitro differentiationErythroid transcription factorsIn vitro studiesRepressor BCL11AImmunomodulatory drugsCodanin-1, defective in congenital dyserythropoietic anemia I (CDA-I), regulates erythroid differentiation
Bosques L, Modepalli S, Nagarajan A, Tang C, MartÃnez-Morilla S, Rahman N, Mehta S, Krause D, Tamary H, Gallagher P, Hattangadi S, Kupfer G. Codanin-1, defective in congenital dyserythropoietic anemia I (CDA-I), regulates erythroid differentiation. Annals Of Hematology 2025, 104: 4987-5001. PMID: 41028447, PMCID: PMC12619753, DOI: 10.1007/s00277-025-06540-6.Peer-Reviewed Original ResearchConceptsCodanin-1CDA-ICDA-I.Gene regulatory regionsCongenital dyserythropoietic anemia IHigh-throughput sequencingAbnormal morphologyErythroid differentiationGlobal gene expressionErythroid progenitor developmentBone marrow erythroblastsHuman K562 cellsAutosomal recessive disorderErythroid cell differentiationRegulatory regionsChromatin immunoprecipitationAHSP geneCDAN1 geneErythroid genesMarrow erythroblastsIneffective erythropoiesisPeripheral bloodGene expressionHuman CD34GenesComprehensive phenotypic and proteomic analyses of human reticulocyte maturation
Leduc M, Papoin J, Yan H, Le Gall M, El Nemer W, Hillyer C, Gallagher P, Gautier E, Mohandas N, Blanc L. Comprehensive phenotypic and proteomic analyses of human reticulocyte maturation. Blood Red Cells & Iron 2025, 1: 100012. PMID: 41306548, PMCID: PMC12646609, DOI: 10.1016/j.brci.2025.100012.Peer-Reviewed Original ResearchCitationsConceptsStages of reticulocyte maturationReticulocyte maturationExpression of surface proteinsMature reticulocytesProteomic analysisSurface proteinsNascent reticulocytesExtensive membrane remodelingClasses of proteinsComparison of proteomesMembrane remodelingOrganelle clearanceFluorescence-activated cell sorting analysisMembrane proteinsStages of erythropoiesisMature erythrocytesCell sorting analysisProteomic profilingMolecular mechanismsProteinDensity gradient separationHealthy human bone marrowProcess remodelingProteomicsSorting analysisBMI1 regulates human erythroid self-renewal through both gene repression and gene activation
McGrath K, Olsen J, Koniski A, Murphy K, Getman M, An H, Schulz V, Kim A, Zhang B, Carlson T, Papoin J, Blanc L, Kingsley P, Westhoff C, Gallagher P, Chou S, Steiner L, Palis J. BMI1 regulates human erythroid self-renewal through both gene repression and gene activation. Nature Communications 2025, 16: 7619. PMID: 40817093, PMCID: PMC12356964, DOI: 10.1038/s41467-025-62993-3.Peer-Reviewed Original ResearchAltmetricMeSH Keywords and ConceptsConceptsSelf-RenewalErythroid precursorsProliferative capacityImmature erythroid precursorsExtensive proliferationCell cycle kineticsGene repressionMechanism of actionGene activationRed blood cellsHuman erythroblastsBMI1 overexpressionBMI1 inhibitionTarget genesClinical useRepressive histone marksRepressive histone modificationsMonoclonal antibodiesCycle kineticsBlood cellsBMI1Regulation of cholesterol homeostasisClinical purposesErythroblastsHistone marksThe Emerging Role of Genome Sequencing in Newborn Screening
Chaudhari B, Burns W, Messick E, Gallagher P. The Emerging Role of Genome Sequencing in Newborn Screening. Clinics In Perinatology 2025, 52: 609-628. PMID: 40850719, DOI: 10.1016/j.clp.2025.06.008.Peer-Reviewed Original ResearchMeSH Keywords and ConceptsNewborn Screening and Perinatal Genetic Diagnostic Testing
Gallagher P, Kemper A. Newborn Screening and Perinatal Genetic Diagnostic Testing. Clinics In Perinatology 2025, 52: xvii-xix. PMID: 40850721, DOI: 10.1016/j.clp.2025.06.013.Peer-Reviewed Original ResearchWelcome to Blood Red Cells & Iron
Gallagher P, Silvestri L. Welcome to Blood Red Cells & Iron. Blood Red Cells & Iron 2025, 1: 100008. DOI: 10.1016/j.brci.2025.100008.Peer-Reviewed Original Research
News & Links
Copy Link
Get In Touch
Copy Link