Jessica Mariani, PhD
Research ScientistCards
About
Research
Publications
2025
Specification of human brain regions with orthogonal gradients of WNT and SHH in organoids reveals patterning variations across cell lines
Scuderi S, Kang T, Jourdon A, Nelson A, Yang L, Wu F, Anderson G, Mariani J, Tomasini L, Sarangi V, Abyzov A, Levchenko A, Vaccarino F. Specification of human brain regions with orthogonal gradients of WNT and SHH in organoids reveals patterning variations across cell lines. Cell Stem Cell 2025, 32: 970-989.e11. PMID: 40315847, PMCID: PMC12145255, DOI: 10.1016/j.stem.2025.04.006.Peer-Reviewed Original ResearchConceptsGradient of WntGene expression programsSingle-cell transcriptomicsBrain lineagesMorphogen gradientsEpigenetic variationDorso-ventral axisShh signalingExpression programsMorphogenFetal human brainHuman iPSC linesPluripotent stem cellsCell linesNeuronal lineageNeural tubeShhWntLineagesLine-to-line variationEarly patterningPattern systemPattern variationHuman brain regionsIPSC lines
2024
Evaluating performance and applications of sample-wise cell deconvolution methods on human brain transcriptomic data
Dai R, Chu T, Zhang M, Wang X, Jourdon A, Wu F, Mariani J, Vaccarino F, Lee D, Fullard J, Hoffman G, Roussos P, Wang Y, Wang X, Pinto D, Wang S, Zhang C, consortium P, Chen C, Liu C. Evaluating performance and applications of sample-wise cell deconvolution methods on human brain transcriptomic data. Science Advances 2024, 10: eadh2588. PMID: 38781336, PMCID: PMC11114236, DOI: 10.1126/sciadv.adh2588.Peer-Reviewed Original ResearchConceptsHuman brain transcriptome dataBrain transcriptomic dataRNA-seqTranscriptome dataCell-type gene expressionGene expressionCell-type proportionsSingle-cell dataMultiple brain disordersBrain cell typesCell deconvolution methodsPostmortem brainsRNA sequencingBrain disordersBrain developmentSchizophreniaEQTLAlzheimer's diseaseCell typesOrganoid samplesBrainBiological applicationsCharacterization of enhancer activity in early human neurodevelopment using Massively Parallel Reporter Assay (MPRA) and forebrain organoids
Capauto D, Wang Y, Wu F, Norton S, Mariani J, Inoue F, Crawford G, Ahituv N, Abyzov A, Vaccarino F. Characterization of enhancer activity in early human neurodevelopment using Massively Parallel Reporter Assay (MPRA) and forebrain organoids. Scientific Reports 2024, 14: 3936. PMID: 38365907, PMCID: PMC10873509, DOI: 10.1038/s41598-024-54302-7.Peer-Reviewed Original ResearchConceptsMassively parallel reporter assaysGene expressionRegulation of gene expressionForebrain organoidsHuman fetal tissuesHigh-throughput assayReporter assayFetal tissuesStem cellsNeurodevelopmentHuman neurodevelopmentActivation signalsEnhanced activityGenesOrganoidsForebrainBrain organoidsAssayBrain
2023
Author Correction: Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis
Jourdon A, Wu F, Mariani J, Capauto D, Norton S, Tomasini L, Amiri A, Suvakov M, Schreiner J, Jang Y, Panda A, Nguyen C, Cummings E, Han G, Powell K, Szekely A, McPartland J, Pelphrey K, Chawarska K, Ventola P, Abyzov A, Vaccarino F. Author Correction: Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis. Nature Neuroscience 2023, 26: 2035-2035. PMID: 37674007, DOI: 10.1038/s41593-023-01447-9.Peer-Reviewed Original ResearchAuthor Correction: Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia
Zhu X, Zhou B, Pattni R, Gleason K, Tan C, Kalinowski A, Sloan S, Fiston-Lavier A, Mariani J, Petrov D, Barres B, Duncan L, Abyzov A, Vogel H, Moran J, Vaccarino F, Tamminga C, Levinson D, Urban A. Author Correction: Machine learning reveals bilateral distribution of somatic L1 insertions in human neurons and glia. Nature Neuroscience 2023, 26: 1833-1833. PMID: 37648813, DOI: 10.1038/s41593-023-01438-w.Peer-Reviewed Original ResearchModeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis
Jourdon A, Wu F, Mariani J, Capauto D, Norton S, Tomasini L, Amiri A, Suvakov M, Schreiner J, Jang Y, Panda A, Nguyen C, Cummings E, Han G, Powell K, Szekely A, McPartland J, Pelphrey K, Chawarska K, Ventola P, Abyzov A, Vaccarino F. Modeling idiopathic autism in forebrain organoids reveals an imbalance of excitatory cortical neuron subtypes during early neurogenesis. Nature Neuroscience 2023, 26: 1505-1515. PMID: 37563294, PMCID: PMC10573709, DOI: 10.1038/s41593-023-01399-0.Peer-Reviewed Original ResearchConceptsIdiopathic autism spectrum disorderCortical neuron subtypesAutism spectrum disorderEarly cortical developmentCortical organoidsCortical plateExcitatory neuronsCortical developmentRare formNeuron subtypesUnaffected fatherASD pathogenesisForebrain organoidsEarly neurogenesisRare variantsIdiopathic autismRisk genesTranscriptomic alterationsNeuronsProbandsSingle-cell transcriptomicsForebrain developmentSpectrum disorderTranscriptomic changesAlterationsClonally Selected Lines After CRISPR-Cas Editing Are Not Isogenic
Panda A, Suvakov M, Mariani J, Drucker K, Park Y, Jang Y, Kollmeyer T, Sarkar G, Bae T, Kim J, Yoon W, Jenkins R, Vaccarino F, Abyzov A. Clonally Selected Lines After CRISPR-Cas Editing Are Not Isogenic. The CRISPR Journal 2023, 6: 176-182. PMID: 37071670, PMCID: PMC10123805, DOI: 10.1089/crispr.2022.0050.Peer-Reviewed Original ResearchConceptsCopy number alterationsSeparate genomic lociSingle nucleotide mutationsApplication of CRISPRCRISPR-Cas editingOff-target editsScreening of clonesGenomic divergenceWhole-genome sequencingGenomic lociSelection of clonesGenome sequencingNucleotide mutationsTarget editsCultured cellsClonal linesNumber alterationsCell cloningClonesMutationsCloningCRISPR
2022
Characterization of human basal ganglia organoids
Brady M, Mariani J, Koca Y, Szekely A, King R, Bloch M, Landeros-Weisenberger A, Leckman J, Vaccarino F. Characterization of human basal ganglia organoids. Molecular Psychiatry 2022, 27: 4823-4823. PMID: 36536052, DOI: 10.1038/s41380-022-01914-y.Peer-Reviewed Original ResearchMispatterning and interneuron deficit in Tourette Syndrome basal ganglia organoids
Brady M, Mariani J, Koca Y, Szekely A, King R, Bloch M, Landeros-Weisenberger A, Leckman J, Vaccarino F. Mispatterning and interneuron deficit in Tourette Syndrome basal ganglia organoids. Molecular Psychiatry 2022, 27: 5007-5019. PMID: 36447010, PMCID: PMC9949887, DOI: 10.1038/s41380-022-01880-5.Peer-Reviewed Original ResearchConceptsTourette syndromeInterneuron deficitsGABAergic interneuronsHealthy controlsNeurodevelopmental underpinningsNeuropathological deficitsBG circuitryNeuropsychiatric disordersDecreased differentiationT patientsInterneuronsAltered expressionPotential mechanismsCilia disruptionSonic hedgehogOrganoidsStem cellsTS individualsPluripotent stem cellsGli transcription factorsDeficitsOrganoid differentiationEarly stagesCholinergicPatientsCorrection: All2: A tool for selecting mosaic mutations from comprehensive multi-cell comparisons
Sarangi V, Jang Y, Suvakov M, Bae T, Fasching L, Sekar S, Tomasini L, Mariani J, Vaccarino F, Abyzov A. Correction: All2: A tool for selecting mosaic mutations from comprehensive multi-cell comparisons. PLOS Computational Biology 2022, 18: e1010703. PMID: 36378632, PMCID: PMC9665359, DOI: 10.1371/journal.pcbi.1010703.Peer-Reviewed Original Research