Liman Liu
Associate Research ScientistCards
About
Research
Publications
2025
ATP-gated P2x7 receptors express at type II auditory nerves and required for efferent hearing control and noise protection
Liang C, Zhai T, Chen J, Fang S, Zhu Y, Liu L, Yu N, Zhao H. ATP-gated P2x7 receptors express at type II auditory nerves and required for efferent hearing control and noise protection. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2421995122. PMID: 40540593, PMCID: PMC12207453, DOI: 10.1073/pnas.2421995122.Peer-Reviewed Original ResearchConceptsCochlear efferent systemHearing sensitivityATP-gated P2X7 receptorP2X7 receptorOuter hair cellsAuditory nerveInnervate outer hair cellsEfferent systemAuditory brainstem responseSpiral ganglion (SGActive cochlear amplificationActive cochlear mechanicsEfferent nervesP2X7 KO miceIncreased susceptibility to noiseSusceptibility to noiseNeuronal functionAcoustic startle responseHair cellsBrainstem responseHearing lossEfferent suppressionHearing disordersOHC electromotilityNoise exposurePrevention and treatment of noise-induced hearing loss and cochlear synapse degeneration by potassium channel blockers in vivo
Zhao H, Liu L, Lu X, Quinonez A, Roberts R, Zhai T, Liang C. Prevention and treatment of noise-induced hearing loss and cochlear synapse degeneration by potassium channel blockers in vivo. Hearing Research 2025, 464: 109319. PMID: 40450915, PMCID: PMC12318480, DOI: 10.1016/j.heares.2025.109319.Peer-Reviewed Original ResearchNoise-induced hearing lossDistortion product otoacoustic emissionsAuditory brainstem responseNoise exposureHearing lossAcoustic startle responseTreatment of noise-induced hearing lossHidden hearing lossSystemic administrationInduce hearing lossGAL-021Active cochlear mechanicsChannel blockersOtoacoustic emissionsBrainstem responseHearing disordersAmeliorating noise-induced hearing lossCochlear mechanicsPost-exposure administrationSynapse degenerationInner hair cellsBK channelsAdministration timeIntraperitoneal injectionPharmacological treatment
2023
Cx26 heterozygous mutations cause hyperacusis-like hearing oversensitivity and increase susceptibility to noise
Liu L, Liang C, Chen J, Fang S, Zhao H. Cx26 heterozygous mutations cause hyperacusis-like hearing oversensitivity and increase susceptibility to noise. Science Advances 2023, 9: eadf4144. PMID: 36753545, PMCID: PMC9908021, DOI: 10.1126/sciadv.adf4144.Peer-Reviewed Original ResearchConceptsActive cochlear amplificationCochlear amplificationHeterozygous mutationsPermanent hearing threshold shiftHearing threshold shiftCochlear lateral wallNonsyndromic hearing lossHearing lossMouse modelGeneral populationNoise exposureThreshold shiftHeterozygote carriersHearing sensitivityLateral wallJunction genesGap junction genesPotential generationUnexpected findingExposureMutationsOversensitivityProtein prestinDeafness
2021
Efferent neurons control hearing sensitivity and protect hearing from noise through the regulation of gap junctions between cochlear supporting cells
Zhao H, Liu L, Yu N, Zhu Y, Mei L, Chen J, Liang C. Efferent neurons control hearing sensitivity and protect hearing from noise through the regulation of gap junctions between cochlear supporting cells. Journal Of Neurophysiology 2021, 127: 313-327. PMID: 34907797, PMCID: PMC8759971, DOI: 10.1152/jn.00468.2021.Peer-Reviewed Original ResearchConceptsOuter hair cellsActive cochlear amplificationCochlear efferent systemDistortion product otoacoustic emissionsEfferent systemEfferent pathwaysHearing sensitivityMedial olivocochlear efferent fibersPresynaptic vesicular acetylcholine transportersGap junctionsOlivocochlear efferent fibersHair cellsApplication of acetylcholineCochlear supporting cellsProtection of hearingVesicular acetylcholine transporterActive cochlear amplifierCochlear amplificationPostsynaptic ACh receptorsProduct otoacoustic emissionsMOC efferent systemHair cell activityEfferent nervesEfferent inhibitionEfferent fibersEarly Functional and Cognitive Declines Measured by Auditory-Evoked Cortical Potentials in Mice With Alzheimer’s Disease
Mei L, Liu L, Chen K, Zhao H. Early Functional and Cognitive Declines Measured by Auditory-Evoked Cortical Potentials in Mice With Alzheimer’s Disease. Frontiers In Aging Neuroscience 2021, 13: 710317. PMID: 34588972, PMCID: PMC8473830, DOI: 10.3389/fnagi.2021.710317.Peer-Reviewed Original ResearchAuditory cortexCognitive declineEvent-related potentialsCortical potentialsCognitive activityCognitive changesNeural activationAD-related dementiaAD micePeak N2APP/PS1 AD miceAmyloid precursor proteinAlzheimer's diseasePeak P3AuditoryAuditory brainstem response recordingsNormal aging effectP1 peakCBA/CaJ micePeak P1Subdermal needle electrodesObjective biomarkersP3AECPCBA miceExcess extracellular K+ causes inner hair cell ribbon synapse degeneration
Zhao H, Zhu Y, Liu L. Excess extracellular K+ causes inner hair cell ribbon synapse degeneration. Communications Biology 2021, 4: 24. PMID: 33398038, PMCID: PMC7782724, DOI: 10.1038/s42003-020-01532-w.Peer-Reviewed Original ResearchConceptsCochlear synaptopathySynapse degenerationRibbon synapsesNoise exposureNoise-induced cochlear synaptopathyInner hair cell ribbon synapsesIHC ribbon synapsesGlutamate receptor agonistsBK channel blockersHair cell ribbon synapsesReceptor agonistFirst synapseChannel blockersHearing lossIHC ribbonsHearing disordersDegenerationBK channelsPotential targetSynaptopathyAuditory systemSynapsesExposureSwellingExcitotoxicity
2019
Hearing loss is an early biomarker in APP/PS1 Alzheimer’s disease mice
Liu Y, Fang S, Liu L, Zhu Y, Li C, Chen K, Zhao H. Hearing loss is an early biomarker in APP/PS1 Alzheimer’s disease mice. Neuroscience Letters 2019, 717: 134705. PMID: 31870800, PMCID: PMC7004828, DOI: 10.1016/j.neulet.2019.134705.Peer-Reviewed Original ResearchConceptsAPP/PS1 AD miceDistortion product otoacoustic emissionsAuditory brainstem responseAD miceHearing lossAlzheimer's diseaseDisease miceAPP/PS1 Alzheimer's disease miceAPP/PS1 miceAD mouse modelAlzheimer's disease miceMedial geniculate bodyWild-type littermatesCochlear microphonic recordingsProduct otoacoustic emissionsMonths of ageSpatial learning deficitsPS1 miceUpper brainstemABR thresholdFunction testingGeniculate bodyBrainstem responseLateral lemniscusEarly biomarkers
Get In Touch
Contacts
Email