Kitt Petersen, MD
Professor of Medicine (Endocrinology)Cards
Appointments
Contact Info
About
Copy Link
Titles
Professor of Medicine (Endocrinology)
Biography
Dr. Petersen is Professor of Internal Medicine, Section of Endocrinology, Yale University School of Medicine, Honorary Professor of Medicine and Clinical Physiology at University of Copenhagen, Deputy Director of the Metabolic Imaging and Liver Metabolism Section at the Center for Basic Metabolic Research, Copenhagen University, Denmark.
Dr. Petersen received her bachelor’s degree from N. Zahle’s Gymnasieskole (majors: math & physics) in Copenhagen (1978) and her MD from the University of Copenhagen (1985), completed clinical training at the university hospitals, Copenhagen followed by the prestigious fellowships: Kandidat- and Seniorstipendiums for research in metabolism at the University of Copenhagen (1986-1991).
In 1990 Dr. Petersen received further fellowship and postdoctoral training at Yale University in magnetic resonance (MR) spectroscopy and metabolism. At Yale University School of Medicine she became Research Scientist at in 1991, Assistant Professor in 1998, Associate Professor in 2004 and Professor in 2012.
She has received prestigious awards for her clinical research, including:
- Henry Christian Award for Excellence in Clinical Research (1997, 1998, 2004)
- Novartis Young Investigator Award for Excellence in Clinical Research in Diabetes (2002)
- Glaxo Smith Kline Scholar Award (2003)
- Distinguished Clinical Scientist Award from the American Diabetes Association (2009)
- Team Science Award, Association for Clinical and Translational Science (2016)
Dr. Petersen has published over 140 articles using stable isotopes MR spectroscopy to explore the pathogenesis of NAFLD, type 2 diabetes, insulin resistance in aging, obesity, and low birth weight and the reversal of NAFLD and insulin resistance with caloric restriction or exercise.
Appointments
Endocrinology
ProfessorPrimary
Other Departments & Organizations
- Diabetes Research Center
- Endocrinology
- Fellowship Training
- Internal Medicine
- Liver Center
- MR Core
- Yale Ventures
Education & Training
- MD
- University of Copenhagen (1985)
Research
Copy Link
Overview
Medical Research Interests
Public Health Interests
Research at a Glance
Yale Co-Authors
Publications Timeline
Gerald I Shulman, MD, PhD, MACP, MACE, FRCP
Sylvie Dufour
Mario Kahn
Rafael Calais Gaspar, PhD, MSc
Varman Samuel, MD, PhD
Ikki Sakuma
Publications
2025
Cideb knockdown in mice increases mitochondrial fat oxidation and reverses hepatic steatosis and insulin resistance by the plasma membrane sn-1,2-DAGs–PKCε–insulin receptor kinaseT1150 pathway
Zheng J, Gaspar R, Sakuma I, Hubbard B, Zhang D, Nasiri A, Kahn M, Perelis M, Samuel V, Petersen K, Shulman G. Cideb knockdown in mice increases mitochondrial fat oxidation and reverses hepatic steatosis and insulin resistance by the plasma membrane sn-1,2-DAGs–PKCε–insulin receptor kinaseT1150 pathway. Diabetologia 2025, 1-15. PMID: 40908405, DOI: 10.1007/s00125-025-06539-8.Peer-Reviewed Original ResearchCitationsAltmetricConceptsMitochondrial fat oxidationWhole-body energy expenditureTricarboxylic acidIn vivo rateHFD-induced hepatic steatosisHigh-fat dietHFD-induced insulin resistanceSteatotic liver diseaseAntisense oligonucleotidesHepatic lipogenesisHepatic mitochondrial oxidationHepatic insulin resistanceCidebHepatic steatosisComprehensive Lab Animal Monitoring SystemHigh-fat diet mouse modelInsulin resistanceMitochondrial oxidationMethodsC57BL/6J male miceRadio-labelled isotopesHyperinsulinaemic–euglycaemic clamp studiesKnockdownASO treatmentLipogenesisConclusions/interpretationThese findings1647-P: Coenzyme A Synthase Knockdown Increases Hepatic Mitochondrial Fat Oxidation and Reduces Hepatic Steatosis and Hepatic Insulin Resistance
GASPAR R, SAKUMA I, HUBBARD B, LAMOIA T, ZHENG J, PARIKH S, KAHN M, SILVEIRA L, DUFOUR S, NASIRI A, PERELIS M, PETERSEN K, SAMUEL V, SHULMAN G. 1647-P: Coenzyme A Synthase Knockdown Increases Hepatic Mitochondrial Fat Oxidation and Reduces Hepatic Steatosis and Hepatic Insulin Resistance. Diabetes 2025, 74 DOI: 10.2337/db25-1647-p.Peer-Reviewed Original ResearchConceptsHFD-fed miceAcetyl-CoAHepatic insulin resistanceHFD-fedHepatic acetyl-CoA contentMalonyl-CoA levelsCoenzyme A synthaseFatty acid synthesisHepatic acetyl-CoAAcetyl-CoA contentSteatotic liver diseasePathogenesis of type 2 diabetesHigh-fat dietTCA cycleMitochondrial fat oxidationWhole-body energy expenditureCoA biosynthesisHepatic steatosisAcid synthesisMetabolic pathwaysInsulin resistanceReduced hepatic steatosisDecreased hepatic steatosisCOASYTriacylglycerol content215-OR: Increased White Adipose Tissue Oxidative Capacity and Insulin Resistance Are Early Changes upon High-Fat Diet in Healthy Humans
XOURAFA G, GRANATA C, TRENKAMP S, KORZEKWA B, SCHRAUWEN-HINDERLING V, PETERSEN K, SHULMAN G, KAHL S, RODEN M. 215-OR: Increased White Adipose Tissue Oxidative Capacity and Insulin Resistance Are Early Changes upon High-Fat Diet in Healthy Humans. Diabetes 2025, 74 DOI: 10.2337/db25-215-or.Peer-Reviewed Original ResearchConceptsWhite adipose tissueFat mass indexInsulin resistanceHigh-fat dietLipid contentEuropean Association for the StudyNon-esterified fatty acidsInsulin sensitivityLiver lipid contentParallel-group studyEuropean Association for the Study of DiabetesNon-obese individualsAdipose tissue insulin resistanceWhole-body insulin sensitivityPromote insulin resistanceTissue insulin resistanceHepatic ATP levelsHigh-resolution respirometryHyperinsulinemic-euglycemic clampMitochondrial respirationStudy of DiabetesWhole-body insulin resistanceInsulin stimulationHepatic lipid contentHypercaloric high-fat dietLiver lipid droplet cholesterol content is a key determinant of metabolic dysfunction–associated steatohepatitis
Sakuma I, Gaspar R, Nasiri A, Dufour S, Kahn M, Zheng J, LaMoia T, Guerra M, Taki Y, Kawashima Y, Yimlamai D, Perelis M, Vatner D, Petersen K, Huttasch M, Knebel B, Kahl S, Roden M, Samuel V, Tanaka T, Shulman G. Liver lipid droplet cholesterol content is a key determinant of metabolic dysfunction–associated steatohepatitis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2025, 122: e2502978122. PMID: 40310463, PMCID: PMC12067271, DOI: 10.1073/pnas.2502978122.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsCholine-deficient l-amino acid-defined high-fat dietBempedoic acidLiver fibrosisLiver diseaseL-amino acid-defined high-fat dietAdvanced liver diseaseCholesterol contentHSD17B13 variantsHigh-fat dietTotal liver cholesterol contentTreated miceActivate signaling pathwaysVariant rs738409Liver cholesterol contentLiver lipidsFibrotic responsePromote inflammationTherapeutic approachesSteatotic liver diseaseDietary cholesterol supplementationFibrosisHuman liver samplesI148MAntisense oligonucleotidesProgressive form
2024
Glucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease
Petersen K, Dufour S, Mehal W, Shulman G. Glucagon promotes increased hepatic mitochondrial oxidation and pyruvate carboxylase flux in humans with fatty liver disease. Cell Metabolism 2024, 36: 2359-2366.e3. PMID: 39197461, PMCID: PMC11612994, DOI: 10.1016/j.cmet.2024.07.023.Peer-Reviewed Original ResearchCitationsAltmetricSmall molecule inhibition of glycogen synthase I reduces muscle glycogen content and improves biomarkers in a mouse model of Pompe disease
Gaspar R, Sakuma I, Nasiri A, Hubbard B, LaMoia T, Leitner B, Tep S, Xi Y, Green E, Ullman J, Petersen K, Shulman G. Small molecule inhibition of glycogen synthase I reduces muscle glycogen content and improves biomarkers in a mouse model of Pompe disease. AJP Endocrinology And Metabolism 2024, 327: e524-e532. PMID: 39171753, PMCID: PMC11482269, DOI: 10.1152/ajpendo.00175.2024.Peer-Reviewed Original ResearchCitationsConceptsGAA-KO miceMouse model of Pompe diseaseModel of Pompe diseasePompe diseaseMetabolic dysregulationRegular chowMouse modelSmall molecule inhibitionInsulin sensitivityReduced spontaneous activityGroups of male miceEnzyme acid alpha-glucosidaseProgressive muscle weaknessImprove metabolic dysregulationSynthase IWhole-body insulin sensitivityAcid alpha-glucosidaseImproved glucose toleranceIncreased AMPK phosphorylationWT miceAbnormal accumulation of glycogenGlycogen storage disorderMale miceSpontaneous activityImproved biomarkers1571-P: CIDEB and CGI-58 Regulate Liver Lipid Droplet Size with Cholesterol Content, Linking to Inflammation and Fibrosis in Metabolic Dysfunction–Associated Steatohepatitis
SAKUMA I, GASPAR R, NASIRI A, KAHN M, ZHENG J, GUERRA M, YIMLAMAI D, MURRAY S, PERELIS M, BARNES W, VATNER D, PETERSEN K, SAMUEL V, SHULMAN G. 1571-P: CIDEB and CGI-58 Regulate Liver Lipid Droplet Size with Cholesterol Content, Linking to Inflammation and Fibrosis in Metabolic Dysfunction–Associated Steatohepatitis. Diabetes 2024, 73 DOI: 10.2337/db24-1571-p.Peer-Reviewed Original ResearchConceptsLipid droplet sizeCGI-58Choline-deficient l-amino acid-defined high-fat dietGlycerol-3-phosphate acyltransferaseAntisense oligonucleotidesComparative gene identification-58Glycerol-3-phosphateLoss of function mutationsLipid droplet morphologyExpression of CGI-58Liver inflammationCidebCholesterol contentFunction mutationsL-amino acid-defined high-fat dietComplications of type 2 diabetesMolecular mechanismsDevelopment of liver inflammationMacrophage crown-like structuresType 2 diabetesHigh-fat dietCrown-like structuresASO treatmentGPAMKnockdown292-OR: Coenzyme A Synthase Knockdown Alleviates Metabolic Dysfunction–Associated Steatohepatitis via Decreasing Cholesterol in Liver Lipid Droplets
SAKUMA I, GASPAR R, NASIRI A, KAHN M, GUERRA M, YIMLAMAI D, MURRAY S, PERELIS M, BARNES W, VATNER D, PETERSEN K, SAMUEL V, SHULMAN G. 292-OR: Coenzyme A Synthase Knockdown Alleviates Metabolic Dysfunction–Associated Steatohepatitis via Decreasing Cholesterol in Liver Lipid Droplets. Diabetes 2024, 73 DOI: 10.2337/db24-292-or.Peer-Reviewed Original ResearchConceptsCholine-deficient l-amino acid-defined high-fat dietAccumulation of cholesterolMRNA expressionPlasma ALTL-amino acid-defined high-fat dietProtective effectLiver lipid dropletsType 2 diabetesPotential therapeutic approachHigh-fat dietDecreased plasma ALTFibrosis markersFree cholesterol accumulationLipid dropletsLiver inflammationDay 1Macrophage markersHepatic inflammationMouse modelMarker expressionTherapeutic approachesDay 2Day 3Day 7Fibrosis1577-P: CIDEB Knockdown Promotes Increased Hepatic Mitochondrial Fat Oxidation and Reverses Hepatic Steatosis and Hepatic Insulin Resistance by the PKCε-Insulin Receptor Kinase Pathway
ZHENG J, NASIRI A, GASPAR R, HUBBARD B, SAKUMA I, MA X, MURRAY S, PERELIS M, BARNES W, SAMUEL V, PETERSEN K, SHULMAN G. 1577-P: CIDEB Knockdown Promotes Increased Hepatic Mitochondrial Fat Oxidation and Reverses Hepatic Steatosis and Hepatic Insulin Resistance by the PKCε-Insulin Receptor Kinase Pathway. Diabetes 2024, 73 DOI: 10.2337/db24-1577-p.Peer-Reviewed Original ResearchCitationsConceptsReceptor kinase pathwaysMitochondrial fat oxidationHepatic insulin resistanceKinase pathwayExpression of cidebAmeliorated HFD-induced hepatic steatosisHFD-induced hepatic steatosisHFD-induced insulin resistanceSteatotic liver diseasePathogenesis of type 2 diabetesHepatic steatosisCidebHyperinsulinemic-euglycemic clamp studiesHepatic triglyceride accumulationInsulin resistanceReverse hepatic steatosisTriglyceride accumulationHepatic insulin sensitivityInsulin sensitivityPathwayHepatic expressionHigh-fatWhole-body insulin sensitivityLiver diseaseTranslocationInsulin Resistance in Type 2 Diabetes
Roden M, Petersen K, Shulman G. Insulin Resistance in Type 2 Diabetes. 2024, 238-249. DOI: 10.1002/9781119697473.ch17.Peer-Reviewed Original ResearchCitations
Academic Achievements & Community Involvement
Copy Link
Activities
activity Endocrine Module, Yale School of Medicine
2007 - PresentProfessional OrganizationsCommittee Memberactivity Yale University, School of Medicine
1999 - PresentProfessional OrganizationsCommittee MemberDetailsDepartment of Cell Biology: "Obesity and the Neuro-Endocrine Axis"activity Aarhus University
2005 - 2009CommitteesAdvisorDetailsMD-PhD Advisor, MD-PhD Student Workshop and Thesis Presentations, Aarhus, Denmarkactivity Yale University, School of Medicine
1998 - 2005Professional OrganizationsCommittee MemberDetailsDepartment of Internal Medicine: Endocrine Module 'Pathophysiology of Type 1 and Type 2 Diabetes"activity Yale University, School of Medicine
1998 - 2005Professional OrganizationsCommittee MemberDetailsYale School of. Epidemiology and Public Health: 'Diabetes Pathophysiology and Epidemiology'
News
Copy Link
News
- July 29, 2025
Study Reveals Cholesterol’s Role in Fibrotic Progression of Metabolic Liver Disease
- April 04, 2023
Researchers Demonstrate New Protective Process Against Liver Fibrosis in NASH
- July 19, 2022
Diabetes Treatment and Research at Yale: 30 Years of Progress
- April 14, 2022
Small Amounts of Liver Fat Lead to Insulin Resistance and Increased Cardiometabolic Risk Factors
Get In Touch
Copy Link