John Fortner
ProfessorCards
About
Research
Publications
2025
Microwave Heating of Superparamagnetic Iron-Oxide Nanoparticles Toward Environmental Hyperthermia-Based Applications
Hatinoglu D, Lee S, Choudhary M, Lee J, Attanayake S, Hwang K, Detellem D, Phan M, Fortner J, Apul O. Microwave Heating of Superparamagnetic Iron-Oxide Nanoparticles Toward Environmental Hyperthermia-Based Applications. ACS Applied Materials & Interfaces 2025, 17: 49775-49783. PMID: 40851230, DOI: 10.1021/acsami.5c13454.Peer-Reviewed Original ResearchSuperparamagnetic iron oxide nanoparticlesIron oxide nanoparticlesOxide nanoparticlesParticle sizeSilica-coated magnetite nanoparticlesQuartz sand bedSpherical particle sizeMicrowave heatingField componentsElectric field componentsX-ray diffractionEddy currentsTransmission electron microscopyMagnetite nanoparticlesThermal exposureSand bedSurface spin disorderReverse microemulsionMagnetic heatingNanoparticlesCore sizeElectron microscopySilica-coatedThermal decompositionMagnetic field componentsToward Continuous, Oriented Covalent Organic Framework Membranes for Precise Molecular Separations
Parkinson M, Vardhan H, Verduzco R, Fortner J, Elimelech M. Toward Continuous, Oriented Covalent Organic Framework Membranes for Precise Molecular Separations. ACS Nano 2025, 19: 29934-29960. PMID: 40815608, PMCID: PMC12392735, DOI: 10.1021/acsnano.5c09252.Peer-Reviewed Original ResearchCovalent organic framework membranesCovalent organic frameworksMolecular separationCOF membranesOrganic framework membranesPorous crystalline frameworkMembrane materialsOne-dimensional nanochannelsOrganic solvent nanofiltrationReticular chemistryCrystalline frameworkStructural tunabilityOrganic frameworksIon separationSolvent nanofiltrationGas separationOrganic monomersOriented membranesThermal stabilityCrystalline matrixMembrane separation processesSeparation processMolecular transportSeparationSynthesisSecondary Mobility of Arsenic Due to In Situ-Generated Iron–Arsenic Colloids upon Iron Oxide Amendments
Zhao Y, Ci C, Fortner J, Wang D, Jiang Y, Yuan S, Zhang H, Liao P. Secondary Mobility of Arsenic Due to In Situ-Generated Iron–Arsenic Colloids upon Iron Oxide Amendments. Environmental Science And Technology 2025, 59: 18320-18331. PMID: 40788983, DOI: 10.1021/acs.est.5c06458.Peer-Reviewed Original ResearchConceptsSecondary mobilizationFe/As ratioArsenic (As)-contaminated groundwaterColloid-facilitated transportGroundwater remediation strategiesMolar Fe/As ratioIn situ remediation approachHigh colloid concentrationsOxic conditionsFe precipitatesLong-term fateColloid concentrationNanoscale structural propertiesRemediation approachesRemediation strategiesBatch experimentsGroundwaterHigher APrecipitationFormation of stable colloidsColloidal characterizationFe saltsAmendmentsFe-AsSecondary risksQuantifying biolipid (rhamnolipid) effects on the aggregation behavior of engineered nanoparticles
Ghosh A, Sharma N, Lee J, Li W, Son J, Kim C, Cápiro N, Pennell K, Parker K, Fortner J. Quantifying biolipid (rhamnolipid) effects on the aggregation behavior of engineered nanoparticles. Environmental Science Nano 2025, 12: 4069-4080. DOI: 10.1039/d5en00376h.Peer-Reviewed Original ResearchCritical coagulation concentrationSurface chemistryNanoparticle stabilityNatural organic matterSurface chargeFunction of electrolyte concentrationParticle surface chemistryRL typeParticle surface chargeMaterial stabilityComplex stabilization processesPseudomonas aeruginosaIonic strengthInterfacial roleStabilization processCoagulation concentrationElectrolyte concentrationAmphiphilic glycolipidsParticle stabilityAggregation behaviorParticle interaction theoryAqueous systemsAggregation regimeNanoparticlesStabilityHigh-Concentration Multibranched Gold Nanoparticle Synthesis via Controllable Seeding
Backhaus A, Long A, Deetman C, Judd D, Tse H, Ratjen L, Lee S, Menges F, Fortner J, Zimmerman J. High-Concentration Multibranched Gold Nanoparticle Synthesis via Controllable Seeding. Langmuir 2025, 41: 19354-19362. PMID: 40668374, DOI: 10.1021/acs.langmuir.5c01845.Peer-Reviewed Original ResearchSurface-enhanced Raman spectroscopyPostsynthesis modificationGold nanoparticlesLocalized surface plasmon resonanceSynthesis scale-upElectromagnetic field enhancementSurface plasmon resonanceGrowth stepsGold nanoparticle synthesisAnisotropic fragmentationSelf-AssemblyGold nanoseedsRaman spectroscopyScale-upSharp branchesGold nanostructuresPlasmon resonanceTip effectField enhancementNanoparticle synthesisNanoparticlesPeak positionSensor capabilitiesScale-up processMagnitude higher concentrationRemediation of groundwater contaminated with perfluoroalkyl acids and chlorinated ethenes using a microbial reductive dechlorination and sorptive material treatment train
Yan P, Dong S, Woodcock M, Fortner J, Pennell K, Cápiro N. Remediation of groundwater contaminated with perfluoroalkyl acids and chlorinated ethenes using a microbial reductive dechlorination and sorptive material treatment train. Water Research 2025, 285: 124009. PMID: 40561626, DOI: 10.1016/j.watres.2025.124009.Peer-Reviewed Original ResearchChlorinated ethenesRemediation of groundwaterPerfluoroalkyl acidsTreatment trainIn situ remediation of groundwaterLong-chain perfluoroalkyl acidsIn situ remediationMicrobial reductive dechlorinationEnhanced adsorption capacityPowdered activated carbonContaminated sitesCo-contaminantsGroundwater plumeCompetitive sorptionReductive dechlorinationAdsorption capacityContaminant plumeRemediation strategiesRemediation challengesContaminant typeSorption barrierSorptive systemGroundwaterS-PACSorptionMicrowave-enhanced catalytic degradation of organic compounds with silica-coated iron oxide nanocrystals via fenton-like reaction pathway
Lee J, Weon S, Lee S, Yun E, Chung M, Kim C, Wang H, Fortner J. Microwave-enhanced catalytic degradation of organic compounds with silica-coated iron oxide nanocrystals via fenton-like reaction pathway. Npj Clean Water 2025, 8: 25. PMID: 40190781, PMCID: PMC11968400, DOI: 10.1038/s41545-025-00449-3.Peer-Reviewed Original ResearchDegradation of organic compoundsIron oxide nanocrystalsElectron paramagnetic resonanceMethyl orangeOxide nanocrystalsDegradation of methyl orangeAmorphous silica coatingOrganic compoundsCatalytic degradation of organic compoundsMW irradiationBenzoic acidOxidation processDegradation of BACatalytic oxidation processFenton-type processModel organic moleculesSilica coatingSuperparamagnetic iron oxide nanocrystalsWastewater treatment processesCatalytic degradationReaction pathwaysOrganic moleculesAdvanced water treatmentMetal oxidesReaction mechanismPrecisely controlled bimetallic nanocatalysts on mesoporous silica nanoparticle supports for highly efficient and selective nitrate reduction
Lee J, Lee S, Jung H, Kim C, Fortner J. Precisely controlled bimetallic nanocatalysts on mesoporous silica nanoparticle supports for highly efficient and selective nitrate reduction. Applied Catalysis B Environment And Energy 2025, 361: 124600. DOI: 10.1016/j.apcatb.2024.124600.Peer-Reviewed Original ResearchBimetallic nanocatalystsCatalyst controlN2 selectivityReduced catalystsSilica nanoparticlesMesoporous silica nanoparticlesSynthesis strategyProduct selectivityPd particlesNanocatalystsCatalystReaction kineticsAtomic clustersMultiple reactionsCatalyst sizeReaction rateReduction processNitrate reduction processReactionCatalyst deteriorationNanoparticlesNitrogen gasNitrate reductionNitrateImpregnation
2024
Tuning Metal–Organic Framework Linker Chemistry for Transition Metal Ion Separations
Violet C, Parkinson M, Ball A, Kulik H, Fortner J, Elimelech M. Tuning Metal–Organic Framework Linker Chemistry for Transition Metal Ion Separations. ACS Applied Materials & Interfaces 2024, 17: 1911-1921. PMID: 39682030, DOI: 10.1021/acsami.4c16173.Peer-Reviewed Original ResearchMetal-organic frameworksUiO-66-XTransition metal ionsIon separationMetal ionsSolvent-assisted linker exchangeParent metal-organic frameworkDensity functional theory calculationsFunctional groupsBinding energyUiO-66-(COOH)2Ion binding energiesMetal ion separationUiO-66-COOHUiO-66 derivativesLinker chemistryPost-synthetic modificationCarboxylic acid groupsIncorporation of carboxylic acid groupsQuartz crystal microbalanceLinker exchangeUiO-66Pore windowsHigh selectivityMaterials chemistryReductive Dissolution of NCM Cathode through Anaerobic Respiration by Shewanella putrefaciens
Kim S, Lee K, Kim K, Lee S, Fortner J, An H, Son Y, Hwang H, Han Y, Myung Y, Jung H. Reductive Dissolution of NCM Cathode through Anaerobic Respiration by Shewanella putrefaciens. Environmental Science And Technology 2024, 58: 18345-18355. PMID: 39352755, DOI: 10.1021/acs.est.4c05486.Peer-Reviewed Original ResearchLithium-ion batteriesCathode materialsConsumption of lithium-ion batteriesShewanella putrefaciensDissolution of LiReduction of NiAnaerobic respirationNCM cathodesNCM622Room temperatureAnaerobic conditionsCathodeMicrobial respirationNeutral pHPristineCOShewanella putrefaciensAnaerobic environmentLiNiRespirationReductive dissolution
News
News
- June 16, 2023Source: ACS ES&T Engineering
Nanobubble Reactivity: Evaluating Hydroxyl Radical Generation (or Lack Thereof) Under Ambient Conditions
- December 16, 2019
Threat of Toxic Chemicals Draws Scores of Experts to Yale School of Public Health
- December 02, 2019Source: Yale Daily News
High exposure to harmful chemical impacts thyroid hormones in pregnant mothers