Cynthia Megyola
Research Assistant 2Cards
About
Research
Publications
2015
Novel Riboswitch-Binding Flavin Analog That Protects Mice against Clostridium difficile Infection without Inhibiting Cecal Flora
Blount KF, Megyola C, Plummer M, Osterman D, O'Connell T, Aristoff P, Quinn C, Chrusciel RA, Poel TJ, Schostarez HJ, Stewart CA, Walker DP, Wuts PG, Breaker RR. Novel Riboswitch-Binding Flavin Analog That Protects Mice against Clostridium difficile Infection without Inhibiting Cecal Flora. Antimicrobial Agents And Chemotherapy 2015, 59: 5736-5746. PMID: 26169403, PMCID: PMC4538501, DOI: 10.1128/aac.01282-15.Peer-Reviewed Original ResearchConceptsDifficile infectionCecal floraSingle oral doseClostridium difficile infectionTime-kill studiesInfection recurrenceOral doseBowel floraC57BL/6 miceClinical developmentClostridium difficileRiboflavin homeostasisTherapeutic agentsPrevotella genusLower likelihoodMiceBactericidal activityEquipotent activityHigh rateLess alterationInfectionAntibacterial drug discoveryNovel mechanismFuture studiesAnalogues of riboflavin
2014
Nonstochastic Reprogramming from a Privileged Somatic Cell State
Guo S, Zi X, Schulz VP, Cheng J, Zhong M, Koochaki SH, Megyola CM, Pan X, Heydari K, Weissman SM, Gallagher PG, Krause DS, Fan R, Lu J. Nonstochastic Reprogramming from a Privileged Somatic Cell State. Cell 2014, 156: 649-662. PMID: 24486105, PMCID: PMC4318260, DOI: 10.1016/j.cell.2014.01.020.Peer-Reviewed Original ResearchConceptsSomatic cell stateCell statesAcquisition of pluripotencyMurine hematopoietic progenitorsEndogenous Oct4Cell cycle accelerationNonstochastic mannerSomatic cellsProgeny cellsPluripotent fateYamanaka factorsCell cycleHematopoietic progenitorsP53 knockdownPluripotencyReprogrammingCycling populationFactor expressionCellsFibroblastsImportant bottleneckKnockdownProgenitorsFateExpression
2013
An Extensive Network of TET2-Targeting MicroRNAs Regulates Malignant Hematopoiesis
Cheng J, Guo S, Chen S, Mastriano SJ, Liu C, D’Alessio A, Hysolli E, Guo Y, Yao H, Megyola CM, Li D, Liu J, Pan W, Roden CA, Zhou XL, Heydari K, Chen J, Park IH, Ding Y, Zhang Y, Lu J. An Extensive Network of TET2-Targeting MicroRNAs Regulates Malignant Hematopoiesis. Cell Reports 2013, 5: 471-481. PMID: 24120864, PMCID: PMC3834864, DOI: 10.1016/j.celrep.2013.08.050.Peer-Reviewed Original ResearchConceptsKey tumor suppressorMyeloid differentiation biasTET2 expressionTranslocation 2 (TET2) geneMolecular regulationDifferentiation biasHematopoietic malignanciesTen-ElevenMalignant hematopoiesisTumor suppressorHematopoietic expansionActivity screenMiR-7MiRNAsExpression of TET2Normal hematopoiesisOncogenic potentialTET2Important pathogenic mechanismMiR-101Extensive roleMiR-29cHematopoiesisExpressionRegulationSignal Transducer and Activator of Transcription 3 Limits Epstein-Barr Virus Lytic Activation in B Lymphocytes
Hill ER, Koganti S, Zhi J, Megyola C, Freeman AF, Palendira U, Tangye SG, Farrell PJ, Bhaduri-McIntosh S. Signal Transducer and Activator of Transcription 3 Limits Epstein-Barr Virus Lytic Activation in B Lymphocytes. Journal Of Virology 2013, 87: 11438-11446. PMID: 23966384, PMCID: PMC3807321, DOI: 10.1128/jvi.01762-13.Peer-Reviewed Original ResearchConceptsEBV lytic activationEpstein-Barr virusLytic activationRefractory cellsB cellsEBV-infected B cellsPrimary EBV infectionViral oncolytic therapyDeterminants of susceptibilityEBV lymphomagenesisEBV infectionSignal transducerEBV latencyOncolytic therapyB lymphocytesCandidate cellular genesB lymphomaHost factorsRefractory stateSTAT3Lymphoblastoid cellsFunctional STAT3Transcription 3Function studiesActivationDynamic Migration and Cell‐Cell Interactions of Early Reprogramming Revealed by High‐Resolution Time‐Lapse Imaging
Megyola CM, Gao Y, Teixeira AM, Cheng J, Heydari K, Cheng E, Nottoli T, Krause DS, Lu J, Guo S. Dynamic Migration and Cell‐Cell Interactions of Early Reprogramming Revealed by High‐Resolution Time‐Lapse Imaging. Stem Cells 2013, 31: 895-905. PMID: 23335078, PMCID: PMC4309553, DOI: 10.1002/stem.1323.Peer-Reviewed Original ResearchConceptsCell-cell interactionsEarly reprogrammingDynamic cell-cell interactionsSingle-cell resolutionTime-lapse microscopyE-cadherin inhibitionTime-lapse imagingPluripotency inductionInduced pluripotencyGranulocyte-monocyte progenitorsPluripotent cellsReprogrammingMolecular mechanismsCell resolutionCell migrationCellular interactionsGenetic makeupE-cadherinSatellite coloniesExperimental systemHematopoietic stateSource cellsRare cellsColoniesComplex mechanisms
2012
An In Vivo Functional Screen Uncovers miR-150-Mediated Regulation of Hematopoietic Injury Response
Adams BD, Guo S, Bai H, Guo Y, Megyola CM, Cheng J, Heydari K, Xiao C, Reddy EP, Lu J. An In Vivo Functional Screen Uncovers miR-150-Mediated Regulation of Hematopoietic Injury Response. Cell Reports 2012, 2: 1048-1060. PMID: 23084747, PMCID: PMC3487471, DOI: 10.1016/j.celrep.2012.09.014.Peer-Reviewed Original ResearchConceptsMiR-150Injury responseBone marrow transplant modelCareful clinical managementHematopoietic suppressionTransplant modelPeripheral bloodHematopoietic recoveryRecipient miceClinical managementAssociated impairmentRole of microRNAsMyeloid cellsHeterozygous knockoutProgenitor cellsClonogenic potentialMajor blood lineagesNormal tissue physiologyHematopoietic stemTissue physiologyC-MybTreatmentMicroRNAsFunction screenCellsComplex oncogene dependence in microRNA-125a–induced myeloproliferative neoplasms
Guo S, Bai H, Megyola CM, Halene S, Krause DS, Scadden DT, Lu J. Complex oncogene dependence in microRNA-125a–induced myeloproliferative neoplasms. Proceedings Of The National Academy Of Sciences Of The United States Of America 2012, 109: 16636-16641. PMID: 23012470, PMCID: PMC3478612, DOI: 10.1073/pnas.1213196109.Peer-Reviewed Original ResearchAnimalsBone Marrow CellsBone Marrow NeoplasmsBone Marrow TransplantationCell LineColony-Forming Units AssayDoxycyclineFlow CytometryGene Expression Regulation, NeoplasticGranulocyte-Macrophage Colony-Stimulating FactorInterleukin-3Leukocytes, MononuclearMiceMice, Inbred C57BLMicroRNAsMyeloproliferative DisordersOncogenesReverse Transcriptase Polymerase Chain Reaction
2011
Identification of a sub-population of B cells that proliferates after infection with epstein-barr virus
Megyola C, Ye J, Bhaduri-McIntosh S. Identification of a sub-population of B cells that proliferates after infection with epstein-barr virus. Virology Journal 2011, 8: 84. PMID: 21352549, PMCID: PMC3056814, DOI: 10.1186/1743-422x-8-84.Peer-Reviewed Original ResearchConceptsEBV infectionB-cell diseaseB cellsCell diseaseB cell growth factorBackgroundEpstein–Barr virusEBV latency genesEBV lymphoproliferative diseaseLevels of LMP1B-cell surface markersPrimary EBV infectionDevelopment of EBVEpstein-Barr virusCell proliferationMemory B cellsNaïve B cellsB cell growthB cell proliferationCell growth factorLack of proliferationCell surface markersIntracellular cytokinesEBV pathogenesisPrimary B cellsEarly cellular events
2009
Upregulation of STAT3 Marks Burkitt Lymphoma Cells Refractory to Epstein-Barr Virus Lytic Cycle Induction by HDAC Inhibitors
Daigle D, Megyola C, El-Guindy A, Gradoville L, Tuck D, Miller G, Bhaduri-McIntosh S. Upregulation of STAT3 Marks Burkitt Lymphoma Cells Refractory to Epstein-Barr Virus Lytic Cycle Induction by HDAC Inhibitors. Journal Of Virology 2009, 84: 993-1004. PMID: 19889776, PMCID: PMC2798381, DOI: 10.1128/jvi.01745-09.Peer-Reviewed Original ResearchConceptsEpstein-Barr virusLytic cycle inductionViral lytic cycleInterleukin-8Refractory stateHost cell gene expressionHDAC inhibitorsLytic cycleLytic cellsLytic switchEBV-positive tumorsCycle inductionSTAT3 protein levelsCell gene expressionDifferent cellular responsesDe novo expressionSusceptible cell linesEBV latentHistone H3IL-6Unphosphorylated STAT3Lytic activationRefractory cellsGene expressionUnique subpopulation
2006
INER, a subnanomolar affinity ligand for the norepinephrine transporter: In vivo characterization in subhuman primates
Tamagnan G, Koren A, Staley J, Cosgrove K, Megyola C, Marek K, Seibyl J. INER, a subnanomolar affinity ligand for the norepinephrine transporter: In vivo characterization in subhuman primates. NeuroImage 2006, 31: t137. DOI: 10.1016/j.neuroimage.2006.04.121.Peer-Reviewed Original Research