Brandon T. Hubbard
DownloadHi-Res Photo
About
Copy Link
Education & Training
- Post-baccalaureate Fellow
- National Institutes of Health (2017)
- BS (Hon)
- Oklahoma State University, Physiology (2015)
Research
Copy Link
Research at a Glance
Yale Co-Authors
Frequent collaborators of Brandon T. Hubbard's published research.
Publications Timeline
A big-picture view of Brandon T. Hubbard's research output by year.
Gerald I Shulman, MD, PhD, MACP, MACE, FRCP
Rafael Calais Gaspar, PhD, MSc
Mario Kahn
Dongyan Zhang
Ikki Sakuma
Kitt Petersen, MD
11Publications
164Citations
Publications
Featured Publications
Q-Flux: A method to assess hepatic mitochondrial succinate dehydrogenase, methylmalonyl-CoA mutase, and glutaminase fluxes in vivo
Hubbard B, LaMoia T, Goedeke L, Gaspar R, Galsgaard K, Kahn M, Mason G, Shulman G. Q-Flux: A method to assess hepatic mitochondrial succinate dehydrogenase, methylmalonyl-CoA mutase, and glutaminase fluxes in vivo. Cell Metabolism 2022, 35: 212-226.e4. PMID: 36516861, PMCID: PMC9887731, DOI: 10.1016/j.cmet.2022.11.011.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsCytosolic calcium regulates hepatic mitochondrial oxidation, intrahepatic lipolysis, and gluconeogenesis via CAMKII activation
LaMoia T, Hubbard B, Guerra M, Nasiri A, Sakuma I, Kahn M, Zhang D, Goodman R, Nathanson M, Sancak Y, Perelis M, Mootha V, Shulman G. Cytosolic calcium regulates hepatic mitochondrial oxidation, intrahepatic lipolysis, and gluconeogenesis via CAMKII activation. Cell Metabolism 2024, 36: 2329-2340.e4. PMID: 39153480, PMCID: PMC11446666, DOI: 10.1016/j.cmet.2024.07.016.Peer-Reviewed Original ResearchCitationsAltmetric
2025
Cideb knockdown in mice increases mitochondrial fat oxidation and reverses hepatic steatosis and insulin resistance by the plasma membrane sn-1,2-DAGs–PKCε–insulin receptor kinaseT1150 pathway
Zheng J, Gaspar R, Sakuma I, Hubbard B, Zhang D, Nasiri A, Kahn M, Perelis M, Samuel V, Petersen K, Shulman G. Cideb knockdown in mice increases mitochondrial fat oxidation and reverses hepatic steatosis and insulin resistance by the plasma membrane sn-1,2-DAGs–PKCε–insulin receptor kinaseT1150 pathway. Diabetologia 2025, 1-15. PMID: 40908405, DOI: 10.1007/s00125-025-06539-8.Peer-Reviewed Original ResearchCitationsAltmetricConceptsMitochondrial fat oxidationWhole-body energy expenditureTricarboxylic acidIn vivo rateHFD-induced hepatic steatosisHigh-fat dietHFD-induced insulin resistanceSteatotic liver diseaseAntisense oligonucleotidesHepatic lipogenesisHepatic mitochondrial oxidationHepatic insulin resistanceCidebHepatic steatosisComprehensive Lab Animal Monitoring SystemHigh-fat diet mouse modelInsulin resistanceMitochondrial oxidationMethodsC57BL/6J male miceRadio-labelled isotopesHyperinsulinaemic–euglycaemic clamp studiesKnockdownASO treatmentLipogenesisConclusions/interpretationThese findings
2024
SGLT2 inhibition alters substrate utilization and mitochondrial redox in healthy and failing rat hearts
Goedeke L, Ma Y, Gaspar R, Nasiri A, Lee J, Zhang D, Galsgaard K, Hu X, Zhang J, Guerrera N, Li X, LaMoia T, Hubbard B, Haedersdal S, Wu X, Stack J, Dufour S, Butrico G, Kahn M, Perry R, Cline G, Young L, Shulman G. SGLT2 inhibition alters substrate utilization and mitochondrial redox in healthy and failing rat hearts. Journal Of Clinical Investigation 2024, 134: e176708. PMID: 39680452, PMCID: PMC11645152, DOI: 10.1172/jci176708.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsSodium-glucose cotransporter type 2Heart failureKetone oxidationGas chromatography-mass spectrometryFatty acid oxidationLeft ventricular ejection fractionReduced myocardial oxidative stressVentricular ejection fractionKetone supplementationWeeks of treatmentMyocardial oxidative stressDecreased pyruvate oxidationInduce heart failurePlasma glucose levelsIn vivo effectsSGLT2i treatmentEjection fractionAssociated with improvementsAwake ratsSGLT2 inhibitionCardioprotective benefitsLiquid chromatography-tandem mass spectrometryPlasma ketonesRates of ketonizationChromatography-tandem mass spectrometrySmall molecule inhibition of glycogen synthase I reduces muscle glycogen content and improves biomarkers in a mouse model of Pompe disease
Gaspar R, Sakuma I, Nasiri A, Hubbard B, LaMoia T, Leitner B, Tep S, Xi Y, Green E, Ullman J, Petersen K, Shulman G. Small molecule inhibition of glycogen synthase I reduces muscle glycogen content and improves biomarkers in a mouse model of Pompe disease. AJP Endocrinology And Metabolism 2024, 327: e524-e532. PMID: 39171753, PMCID: PMC11482269, DOI: 10.1152/ajpendo.00175.2024.Peer-Reviewed Original ResearchCitationsConceptsGAA-KO miceMouse model of Pompe diseaseModel of Pompe diseasePompe diseaseMetabolic dysregulationRegular chowMouse modelSmall molecule inhibitionInsulin sensitivityReduced spontaneous activityGroups of male miceEnzyme acid alpha-glucosidaseProgressive muscle weaknessImprove metabolic dysregulationSynthase IWhole-body insulin sensitivityAcid alpha-glucosidaseImproved glucose toleranceIncreased AMPK phosphorylationWT miceAbnormal accumulation of glycogenGlycogen storage disorderMale miceSpontaneous activityImproved biomarkers
2023
MAD2-Dependent Insulin Receptor Endocytosis Regulates Metabolic Homeostasis.
Park J, Hall C, Hubbard B, LaMoia T, Gaspar R, Nasiri A, Li F, Zhang H, Kim J, Haeusler R, Accili D, Shulman G, Yu H, Choi E. MAD2-Dependent Insulin Receptor Endocytosis Regulates Metabolic Homeostasis. Diabetes 2023, 72: 1781-1794. PMID: 37725942, PMCID: PMC10658066, DOI: 10.2337/db23-0314.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsIR endocytosisInsulin receptor endocytosisCell division regulatorsInsulin receptorProlongs insulin actionReceptor endocytosisTranscriptomic profilesInsulin stimulationEndocytosisMetabolic homeostasisCell surfaceGenetic ablationMetabolic functionsInsulin actionP31cometMad2BubR1DisruptionSignalingRegulatorHomeostasisAdipose tissueInteractionHepatic fat accumulationMetabolism
2022
Distinct subcellular localisation of intramyocellular lipids and reduced PKCε/PKCθ activity preserve muscle insulin sensitivity in exercise-trained mice
Gaspar R, Lyu K, Hubbard B, Leitner B, Luukkonen P, Hirabara S, Sakuma I, Nasiri A, Zhang D, Kahn M, Cline G, Pauli J, Perry R, Petersen K, Shulman G. Distinct subcellular localisation of intramyocellular lipids and reduced PKCε/PKCθ activity preserve muscle insulin sensitivity in exercise-trained mice. Diabetologia 2022, 66: 567-578. PMID: 36456864, PMCID: PMC11194860, DOI: 10.1007/s00125-022-05838-8.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsProtein kinase CsSubcellular compartmentsDistinct subcellular localisationMuscle insulin sensitivityMultiple subcellular compartmentsInsulin receptor kinaseNovel protein kinase CsActivation of PKCεSubcellular localisationPKCθ translocationReceptor kinasePlasma membraneSubcellular distributionTriacylglycerol contentCrucial pathwaysIntramuscular triacylglycerol contentRC miceDiacylglycerolConclusions/interpretationThese resultsPKCεPM compartmentPhosphorylationMuscle triacylglycerol contentSkeletal muscleRecent findingsSystemic gene therapy for methylmalonic acidemia using the novel adeno-associated viral vector 44.9.
Chandler RJ, Di Pasquale G, Sloan JL, McCoy S, Hubbard BT, Kilts TM, Manoli I, Chiorini JA, Venditti CP. Systemic gene therapy for methylmalonic acidemia using the novel adeno-associated viral vector 44.9. Mol Ther Methods Clin Dev 2022, 27: 61-72. PMID: 36186952, DOI: 10.1016/j.omtm.2022.09.001.Peer-Reviewed Original ResearchMetformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis
LaMoia TE, Butrico GM, Kalpage HA, Goedeke L, Hubbard BT, Vatner DF, Gaspar RC, Zhang XM, Cline GW, Nakahara K, Woo S, Shimada A, Hüttemann M, Shulman GI. Metformin, phenformin, and galegine inhibit complex IV activity and reduce glycerol-derived gluconeogenesis. Proceedings Of The National Academy Of Sciences Of The United States Of America 2022, 119: e2122287119. PMID: 35238637, PMCID: PMC8916010, DOI: 10.1073/pnas.2122287119.Peer-Reviewed Original ResearchCitationsAltmetricMeSH Keywords and ConceptsConceptsGlucose-lowering effectPlasma glucose concentrationComplex I activityHepatic gluconeogenesisType 2 diabetes mellitusGlucose concentrationGlycerol-3-phosphate dehydrogenase activityI activityDiabetes mellitusSelective inhibitionMetforminInhibitionRelevant concentrationsGluconeogenesisPhenforminVivoMost studiesDehydrogenase activityGalegineMellitus
2021
Promoterless, Nuclease-Free Genome Editing Confers a Growth Advantage for Corrected Hepatocytes in Mice With Methylmalonic Acidemia.
Chandler RJ, Venturoni LE, Liao J, Hubbard BT, Schneller JL, Hoffmann V, Gordo S, Zang S, Ko CW, Chau N, Chiang K, Kay MA, Barzel A, Venditti CP. Promoterless, Nuclease-Free Genome Editing Confers a Growth Advantage for Corrected Hepatocytes in Mice With Methylmalonic Acidemia. Hepatology 2021, 73: 2223-2237. PMID: 32976669, DOI: 10.1002/hep.31570.Peer-Reviewed Original Research
Academic Achievements & Community Involvement
Copy Link
Honors
honor Jonathan Epstein Scholar
04/19/2024Regional AwardInterurban Clinical Clubhonor Yale College Prize Teaching Fellow
04/29/2019Yale University Award
News
Copy Link
Get In Touch
Copy Link