Anderson M. Winkler, MD, DPhil
About
Research
Publications
2024
Topological cluster statistic (TCS): Toward structural connectivity–guided fMRI cluster enhancement
Mansour L. S, Seguin C, Winkler A, Noble S, Zalesky A. Topological cluster statistic (TCS): Toward structural connectivity–guided fMRI cluster enhancement. Network Neuroscience 2024, 1-24. DOI: 10.1162/netn_a_00375.Peer-Reviewed Original ResearchFunctional magnetic resonance imagingAbstract Functional magnetic resonance imagingBrain activityAnatomical connectivity informationMedium-sized effectsCluster-based inferenceMultimodal informationConnectivity informationAnatomical underpinningsActive inferenceNeuroimaging analysisAnatomical networksDiffusion tractographyOptimal inferenceInsufficient statistical powerWidespread activationMagnetic resonance imagingFunctional imagingConventional approachesDetect local changesInferenceBrainResonance imagingStatistical powerUsabilityTask-Rest Reconfiguration Efficiency of the Reward Network Across Adolescence and its Association With Early Life Stress and Depressive Symptoms
Lee Y, Yuan J, Winkler A, Kircanski K, Pine D, Gotlib I. Task-Rest Reconfiguration Efficiency of the Reward Network Across Adolescence and its Association With Early Life Stress and Depressive Symptoms. Journal Of The American Academy Of Child & Adolescent Psychiatry 2024 PMID: 38878818, DOI: 10.1016/j.jaac.2024.04.018.Peer-Reviewed Original ResearchEarly life stressReward networkDepressive symptomsLife stressReconfiguration efficiencyFunctional connectivityExperiences of early life stressExposure to early life stressEffects of early life stressTask-based fMRI scansHigher levels of depressive symptomsLevels of depressive symptomsSevere early life stressReward processingAge-related associationsFMRI scanningAdolescent depressionCommunity sampleTask demandsResting-stateAsymptomatic youthOlder adolescentsEffects of ageRewardBrain statesResting state electroencephalographic brain activity in neonates can predict age and is indicative of neurodevelopmental outcome
Ansari A, Pillay K, Arasteh E, Dereymaeker A, Mellado G, Jansen K, Winkler A, Naulaers G, Bhatt A, Van Huffel S, Hartley C, De Vos M, Slater R, Baxter L. Resting state electroencephalographic brain activity in neonates can predict age and is indicative of neurodevelopmental outcome. Clinical Neurophysiology 2024, 163: 226-235. PMID: 38797002, PMCID: PMC11250083, DOI: 10.1016/j.clinph.2024.05.002.Peer-Reviewed Original ResearchNeurodevelopmental outcomesResting state EEG dataBayley Scales of InfantAbnormal outcome groupsClinical sitesResting-state EEG activityPostmenstrual agePreterm neonatesOutcome groupNeonatesEEG activityBrain age gapElectroencephalographic brain activityBrain agingWeeksEEG dataGap magnitudeOutcomesBrainAgeIndependent datasetsPretermBSIDBrain activityInfantsNeural correlates of novelty-evoked distress in 4-month-old infants: A synthetic cohort study
Filippi C, Winkler A, Kanel D, Elison J, Hardiman H, Sylvester C, Pine D, Fox N. Neural correlates of novelty-evoked distress in 4-month-old infants: A synthetic cohort study. Biological Psychiatry Cognitive Neuroscience And Neuroimaging 2024 PMID: 38641209, DOI: 10.1016/j.bpsc.2024.03.008.Peer-Reviewed Original ResearchBrain-behavior associationsParent-report measuresInfant temperamentNetwork pairsDorsal attention network connectivityAssessment of infant temperamentParent-reported temperamentAttention network connectivityControl network connectivitySocial anxietyFMRI studyNeural correlatesNeural basisFunctional connectivityParent reportNeuroimaging dataTemperamentAttention-controlComposite scoreDistressNetwork connectivityObservational assessmentNegative associationBehavior estimationDorsalThe effects of genetic and modifiable risk factors on brain regions vulnerable to ageing and disease
Manuello J, Min J, McCarthy P, Alfaro-Almagro F, Lee S, Smith S, Elliott L, Winkler A, Douaud G. The effects of genetic and modifiable risk factors on brain regions vulnerable to ageing and disease. Nature Communications 2024, 15: 2576. PMID: 38538590, PMCID: PMC10973379, DOI: 10.1038/s41467-024-46344-2.Peer-Reviewed Original ResearchConceptsModifiable risk factorsRisk factorsBrain networksUK Biobank participantsTraffic-related air pollutionAlcohol intake frequencyBrain regionsGenome-wide associationBiobank participantsHigher-order brain regionsIntake frequencyXg blood groupEffects of ageCardiovascular deathGenetic influencesUnique contributionsNitrogen dioxideSchizophreniaBrainAgeAir pollutionAlzheimer's diseaseParkinson's diseaseSexAssociationCurrent and Future Approaches to Pediatric Anxiety Disorder Treatment
Zugman A, Winkler A, Qamar P, Pine D. Current and Future Approaches to Pediatric Anxiety Disorder Treatment. American Journal Of Psychiatry 2024, 181: 189-200. PMID: 38425255, PMCID: PMC11256210, DOI: 10.1176/appi.ajp.20231037.Peer-Reviewed Original ResearchBrain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning
Bruin W, Zhutovsky P, van Wingen G, Bas-Hoogendam J, Groenewold N, Hilbert K, Winkler A, Zugman A, Agosta F, Åhs F, Andreescu C, Antonacci C, Asami T, Assaf M, Barber J, Bauer J, Bavdekar S, Beesdo-Baum K, Benedetti F, Bernstein R, Björkstrand J, Blair R, Blair K, Blanco-Hinojo L, Böhnlein J, Brambilla P, Bressan R, Breuer F, Cano M, Canu E, Cardinale E, Cardoner N, Cividini C, Cremers H, Dannlowski U, Diefenbach G, Domschke K, Doruyter A, Dresler T, Erhardt A, Filippi M, Fonzo G, Freitag G, Furmark T, Ge T, Gerber A, Gosnell S, Grabe H, Grotegerd D, Gur R, Gur R, Hamm A, Han L, Harper J, Harrewijn A, Heeren A, Hofmann D, Jackowski A, Jahanshad N, Jett L, Kaczkurkin A, Khosravi P, Kingsley E, Kircher T, Kostic M, Larsen B, Lee S, Leehr E, Leibenluft E, Lochner C, Lui S, Maggioni E, Manfro G, Månsson K, Marino C, Meeten F, Milrod B, Jovanovic A, Mwangi B, Myers M, Neufang S, Nielsen J, Ohrmann P, Ottaviani C, Paulus M, Perino M, Phan K, Poletti S, Porta-Casteràs D, Pujol J, Reinecke A, Ringlein G, Rjabtsenkov P, Roelofs K, Salas R, Salum G, Satterthwaite T, Schrammen E, Sindermann L, Smoller J, Soares J, Stark R, Stein F, Straube T, Straube B, Strawn J, Suarez-Jimenez B, Sylvester C, Talati A, Thomopoulos S, Tükel R, van Nieuwenhuizen H, Werwath K, Wittfeld K, Wright B, Wu M, Yang Y, Zilverstand A, Zwanzger P, Blackford J, Avery S, Clauss J, Lueken U, Thompson P, Pine D, Stein D, van der Wee N, Veltman D, Aghajani M. Brain-based classification of youth with anxiety disorders: transdiagnostic examinations within the ENIGMA-Anxiety database using machine learning. Nature Mental Health 2024, 2: 104-118. DOI: 10.1038/s44220-023-00173-2.Peer-Reviewed Original Research
2023
Widespread, depth‐dependent cortical microstructure alterations in pediatric focal epilepsy
Casella C, Vecchiato K, Cromb D, Guo Y, Winkler A, Hughes E, Dillon L, Green E, Colford K, Egloff A, Siddiqui A, Price A, Grande L, Wood T, Malik S, Teixeira R, Carmichael D, O'Muircheartaigh J. Widespread, depth‐dependent cortical microstructure alterations in pediatric focal epilepsy. Epilepsia 2023, 65: 739-752. PMID: 38088235, PMCID: PMC7616339, DOI: 10.1111/epi.17861.Peer-Reviewed Original ResearchDrug-resistant focal epilepsyFocal epilepsyMagnetic resonance imagingTreatment-related side effectsMRI-positive patientsMRI-negative patientsDisease severity measuresWidespread cortical areasPediatric focal epilepsyQuantitative magnetic resonance imagingPeriod of onsetTissue microstructural changesRadiological abnormalitiesUnderlying pathophysiologyHealthy controlsIndividual patientsCortical areasDisease processSide effectsPatientsFocal pathologyEpilepsyNeurobiological alterationsDisease severityResonance imagingA systematic review and meta-analysis of resting-state fMRI in anxiety disorders: Need for data sharing to move the field forward
Zugman A, Jett L, Antonacci C, Winkler A, Pine D. A systematic review and meta-analysis of resting-state fMRI in anxiety disorders: Need for data sharing to move the field forward. Journal Of Anxiety Disorders 2023, 99: 102773. PMID: 37741177, PMCID: PMC10753861, DOI: 10.1016/j.janxdis.2023.102773.Peer-Reviewed Original ResearchConceptsAnxiety disordersSystematic reviewPrevalent psychiatric disordersStrict inclusion criteriaAnterior cingulate cortexMedial frontal gyrusActivation likelihood estimation (ALE) analysisResting-state fMRITime of scanningFunctional imaging modalitiesPatient groupHealthy groupInclusion criteriaHealthy volunteersPsychiatric disordersCingulate cortexStudy numbersRs-fMRIFrontal gyrusDisordersImaging modalitiesPatientsBrain activityFamily-wise errorGyrusMapping Lesion-Related Epilepsy to a Human Brain Network
Schaper F, Nordberg J, Cohen A, Lin C, Hsu J, Horn A, Ferguson M, Siddiqi S, Drew W, Soussand L, Winkler A, Simó M, Bruna J, Rheims S, Guenot M, Bucci M, Nummenmaa L, Staals J, Colon A, Ackermans L, Bubrick E, Peters J, Wu O, Rost N, Grafman J, Blumenfeld H, Temel Y, Rouhl R, Joutsa J, Fox M. Mapping Lesion-Related Epilepsy to a Human Brain Network. JAMA Neurology 2023, 80: 891-902. PMID: 37399040, PMCID: PMC10318550, DOI: 10.1001/jamaneurol.2023.1988.Peer-Reviewed Original ResearchConceptsRisk of epilepsyLesion locationBrain regionsPoststroke epilepsyControl patientsSeizure controlBrain lesionsIndependent cohortBrain networksLesion typeBrain stimulation sitesLesion network mappingLesion-related epilepsyImproved seizure controlDrug-resistant epilepsyCase-control studyBrain stimulation therapyHuman brain networksSpecific brain regionsDifferent lesion typesSpecific brain networksBasal gangliaVascular territoriesStimulation therapyMAIN OUTCOME