Adalgisa Caccone
Senior Research Scientist and Lecturer in Ecology and Evolutionary BiologyCards
About
Research
Publications
2025
Population Structure of the Invasive Asian Tiger Mosquito, Aedes albopictus, in Europe
Corley M, Cosme L, Armbruster P, Beebe N, Bega A, Boyer S, Caputo B, Chen C, Crawford J, della Torre A, Eritja R, Fontaine M, Gill R, Huynh T, Kadriaj P, Maringer K, Martins A, Maynard A, Mukherjee S, Munstermann L, Pichler V, Sharakhova M, Surendran S, Urbanelli S, Velo E, Wahid I, Akiner M, Balatsos G, Besnard G, Borg M, Bravo‐Barriga D, Marí R, Collantes F, Horvath C, Kavran M, Medialdea‐Carrera R, Melillo T, Michaelakis A, Mikov O, Puggioli A, Rogozi E, Schaffner F, Hackett K, Johnson T, Wu T, Pinto J, Valadas V, Caccone A. Population Structure of the Invasive Asian Tiger Mosquito, Aedes albopictus, in Europe. Ecology And Evolution 2025, 15: e71009. PMID: 40060725, PMCID: PMC11886418, DOI: 10.1002/ece3.71009.Peer-Reviewed Original ResearchGenetic structureMicrosatellite datasetNative rangePatterns of genetic differentiationPopulation genetic structureInvasive European populationsOrigin of invasionEuropean populationsAsian tiger mosquitoGenetic differentiationMicrosatellite lociSNP dataGenetic clustersSNP chipPopulation structureGenetic markersGenetic ancestryTiger mosquitoSampling effortSNPsInvasive mosquito speciesMicrosatelliteMosquito speciesAedes albopictusGenotypes
2024
Whole-genome sequencing confirms multiple species of Galapagos giant tortoises
Gaughran S, Gray R, Ochoa A, Jones M, Fusco N, Miller J, Poulakakis N, de Queiroz K, Caccone A, Jensen E. Whole-genome sequencing confirms multiple species of Galapagos giant tortoises. Evolution 2024, 79: 296-308. PMID: 39548869, DOI: 10.1093/evolut/qpae164.Peer-Reviewed Original ResearchInbreeding avoidance, competition and natal dispersal in a pair-living, genetically monogamous mammal, Azara’s owl monkey (Aotus azarae)
Corley M, de la Chica A, van der Heide G, Rotundo M, Caccone A, Fernandez-Duque E. Inbreeding avoidance, competition and natal dispersal in a pair-living, genetically monogamous mammal, Azara’s owl monkey (Aotus azarae). Royal Society Open Science 2024, 11: 240379. PMID: 39113772, PMCID: PMC11305132, DOI: 10.1098/rsos.240379.Peer-Reviewed Original ResearchAzara's owl monkeysNatal dispersalInbreeding avoidanceMating systemPair-livingPotential matesNatal groupMaintenance of social organizationTiming of natal dispersalLife history stagesPopulation structureGenetic dataMonogamous mammalsWild populationsParental careIndividual fitnessEcological factorsRegulating dispersalAotus azaraeDispersal patternsInbreedingStep-parentsAgonistic conflictsMatingMammalsA genotyping array for the globally invasive vector mosquito, Aedes albopictus
Cosme L, Corley M, Johnson T, Severson D, Yan G, Wang X, Beebe N, Maynard A, Bonizzoni M, Khorramnejad A, Martins A, Lima J, Munstermann L, Surendran S, Chen C, Maringer K, Wahid I, Mukherjee S, Xu J, Fontaine M, Estallo E, Stein M, Livdahl T, Scaraffia P, Carter B, Mogi M, Tuno N, Mains J, Medley K, Bowles D, Gill R, Eritja R, González-Obando R, Trang H, Boyer S, Abunyewa A, Hackett K, Wu T, Nguyễn J, Shen J, Zhao H, Crawford J, Armbruster P, Caccone A. A genotyping array for the globally invasive vector mosquito, Aedes albopictus. Parasites & Vectors 2024, 17: 106. PMID: 38439081, PMCID: PMC10910840, DOI: 10.1186/s13071-024-06158-z.Peer-Reviewed Original ResearchConceptsWhole-genome sequencingLow-coverage whole-genome sequencingSNP chipRepetitive elementsGenomic analysisNative rangePatterns of genomic variationWhole-genome sequencing dataSNP chip genotypesPopulation genomic analysesProtein-coding genesLevels of admixtureOrigin of invasionNon-coding regionsPercentage of repetitive elementsGenotyping of samplesChip genotypesGenetic clustersAncestry analysisGenomic variationGenotyping arraysGenotyping platformsMendelian genesGenetic variationGenotyping methods
2023
Population genomic structure of a widespread, urban‐dwelling mammal: The eastern grey squirrel (Sciurus carolinensis)
Fusco N, Cosentino B, Gibbs J, Allen M, Blumenfeld A, Boettner G, Carlen E, Collins M, Dennison C, DiGiacopo D, Picard A, Edmonson J, Fisher‐Reid M, Fyffe R, Gallo T, Grant A, Harbold W, Heard S, Lafferty D, Lehtinen R, Marino S, McDonald J, Mortelliti A, Murray M, Newman A, Oswald K, Ott‐Conn C, Richardson J, Rimbach R, Salaman P, Steele M, Stothart M, Urban M, Vandegrift K, Vanek J, Vanderluit S, Vezina L, Caccone A. Population genomic structure of a widespread, urban‐dwelling mammal: The eastern grey squirrel (Sciurus carolinensis). Molecular Ecology 2023, 33: e17230. PMID: 38078558, DOI: 10.1111/mec.17230.Peer-Reviewed Original ResearchGalapagos giant tortoise trafficking case demonstrates the utility and applications of long‐term comprehensive genetic monitoring
Quinzin M, Bishop A, Miller J, Poulakakis N, Tapia W, Torres‐Rojo F, Sevilla C, Caccone A. Galapagos giant tortoise trafficking case demonstrates the utility and applications of long‐term comprehensive genetic monitoring. Animal Conservation 2023, 26: 826-838. DOI: 10.1111/acv.12870.Peer-Reviewed Original ResearchGalapagos giant tortoisesGiant tortoisesIllegal wildlife tradeGenetic analysisNuclear microsatellite markersGenetic repositoryBreeding CenterStandard genetic markersComprehensive genetic characterizationWild speciesIsland of originGenetic monitoringMicrosatellite markersGenetic markersGenetic characterizationSpecies protectionGalapagos IslandsLa conservaciónWildlife tradeSpeciesJuvenile tortoisesTortoisesSan CristobalJuvenilesFirst documentation
2022
Population genetics of an invasive mosquito vector, Aedes albopictus in the Northeastern USA
Gloria-Soria A, Shragai T, Ciota A, Duval T, Alto B, Martins A, Westby K, Medley K, Unlu I, Campbell S, Kawalkowski M, Tsuda Y, Higa Y, Indelicato N, Leisnham P, Caccone A, Armstrong P. Population genetics of an invasive mosquito vector, Aedes albopictus in the Northeastern USA. NeoBiota 2022, 78: 99-127. PMID: 37408738, PMCID: PMC10321554, DOI: 10.3897/neobiota.78.84986.Peer-Reviewed Original ResearchPopulations of AeGenetic structureGenetic diversityPopulation geneticsGenetic cladesMicrosatellite markersAsian tiger mosquitoNortheastern USARange northwardsNorthern rangeAlbopictus populationsFounder effectPopulation turnoverVector suppressionEast coastTiger mosquitoEastern USAInvasive mosquito vectorsMosquito vectorsAedes albopictusLocal populationWarming conditionsAlbopictusCold wintersConsecutive yearsTemporal Monitoring of the Floreana Island Galapagos Giant Tortoise Captive Breeding Program
Gray R, Fusco N, Miller J, Tapia W, Mariani C, Caccone A, Jensen E. Temporal Monitoring of the Floreana Island Galapagos Giant Tortoise Captive Breeding Program. Integrative And Comparative Biology 2022, 62: 1864-1871. PMID: 35906184, DOI: 10.1093/icb/icac129.Peer-Reviewed Original ResearchConceptsCaptive breeding programsBreeding programsEffective population sizeGalapagos giant tortoisesCaptive breedingGenetic diversityGenetic trackingReproductive outputSpecies restorationGiant tortoisesConservation managersBreeding outcomesMicrosatellite markersGenetic analysisMore foundersBreeding cyclePopulation sizeBreeding facilitiesTortoisesValue of hybridsParentageOffspringGenomeHybridsBreedingMultiple introductions and overwintering shape the progressive invasion of Aedes albopictus beyond the Alps
Vavassori L, Honnen A, Saarman N, Caccone A, Müller P. Multiple introductions and overwintering shape the progressive invasion of Aedes albopictus beyond the Alps. Ecology And Evolution 2022, 12: e9138. PMID: 35903757, PMCID: PMC9313497, DOI: 10.1002/ece3.9138.Peer-Reviewed Original ResearchDouble-digest restriction site-associated DNA sequencingRestriction site-associated DNA sequencingWeak genetic structurePopulation genomic dataAsian native rangeGenome-wide SNPsHuman-aided dispersalBiogeographic barriersGenetic structureNative rangeGenetic clustersInvasive speciesRecent invasionGenetic patternsGenomic dataSNP dataGenetic admixtureMultiple introductionsDisease vectorsNorthward expansionDNA sequencingMosquito populationsAedes albopictusProgressive invasionFull siblingsApplication of multiplex amplicon deep-sequencing (MAD-seq) to screen for putative drug resistance markers in the Necator americanus isotype-1 β-tubulin gene
George S, Suwondo P, Akorli J, Otchere J, Harrison LM, Bilguvar K, Knight JR, Humphries D, Wilson MD, Caccone A, Cappello M. Application of multiplex amplicon deep-sequencing (MAD-seq) to screen for putative drug resistance markers in the Necator americanus isotype-1 β-tubulin gene. Scientific Reports 2022, 12: 11459. PMID: 35794459, PMCID: PMC9259660, DOI: 10.1038/s41598-022-15718-1.Peer-Reviewed Original ResearchConceptsSingle nucleotide polymorphismsPeriodic mass drug administrationHigh-risk groupCross-sectional studyDrug resistance markersMass drug administrationResistance-associated mutationsHookworm Necator americanusPost-treatment samplesIsotype-1 β-tubulin geneHookworm infectionPersistent infectionResistance markersDrug AdministrationNecator americanusInfection statusVeterinary nematodesInfectionMarkersNucleotide polymorphismsSensitive toolBenzimidazole drugsNucleotide alleles
Academic Achievements & Community Involvement
News
News
- November 13, 2017Source: ScienceLine
A Brazilian city is using DNA to combat the ancient scourge of rats
- September 12, 2017Source: Yale Daily News
To isolate lyme disease bacteria, yale researchers “go fishing”
- August 28, 2017
Ancient History of Lyme Disease in North America Revealed with Bacterial Genomes
- November 03, 1999
Yale Researchers May Have Solved Mystery About Why "Lonesome George" Refuses to Mate
Get In Touch
Contacts
Academic Office Number