Whether it comes from second-hand cigarette smoke, motor vehicle exhaust, building materials or the fumes from household cleaning supplies, toxic air is all around us.
Doctors and scientists are notably concerned about air pollution as it ranks among the top 10 global health risks associated with non-communicable diseases. Organic air pollutants have been shown to contribute to respiratory and cardiac disease as well as reproductive and neurobehavioral problems.
Yet measuring personal exposure levels remains tricky.
Some scientists use expensive air monitors placed in strategic locations. Others employ bulky backpacks loaded with expensive filters and pumps. Wearable detection badges are useful for people working dangerous jobs. Yet each approach has its own limitations, from time consuming laboratory analysis to high risks of unrelated environmental contamination.
Yale School of Public Health Assistant Professor Krystal Pollitt is introducing a new option–a lightweight, unobtrusive, wearable air pollutant sampler she calls the Fresh Air wristband.
During initial testing, the device reliably collected and retained air pollutant molecules over time, allowing for easy analysis and scale-up to monitor large segments of a population.
While the wristband was initially designed to detect air pollutants, in light of the current pandemic, Pollitt is exploring its potential use in monitoring exposure to small airborne pathogens such as coronavirus. She is working with Jordan Peccia, the Thomas E. Golden Jr. professor of chemical and environmental engineering, and Dr. Jodi Sherman, associate professor of anesthesiology and of epidemiology (environmental health sciences), in conducting a field test of the wristbands’ capabilities with the help of health care providers at Yale New Haven Hospital.
In a study recently published in the journal Environmental Science & Technology Letters, Pollitt and a team of YSPH graduate students used the Fresh Air wristband to investigate air pollutant exposure in a group of school-aged children in Springfield, Massachusetts. In this first large scale test of the device, the wristbands detected elevated levels of exposure to pyrene, nitrogen dioxide and other pollutants among children with asthma, those living in certain housing conditions and those taking cars rather than buses to school, illustrating the wristband’s potential applications.
“These results show the potential utility of the Fresh Air wristband as a wearable personal air pollutant sampler capable of assessing exposure among vulnerable populations, especially young children and pregnant women,” said Pollitt, who holds joint appointments in the YSPH Department of Environmental Health Sciences and the Department of Chemical and Environmental Engineering in the Yale School of Engineering & Applied Science.