Smita Mathew
Associate Research ScientistDownloadHi-Res Photo
Cards
Appointments
Pathology
Primary
Contact Info
About
Copy Link
Research
Copy Link
Research at a Glance
Yale Co-Authors
Frequent collaborators of Smita Mathew's published research.
Publications Timeline
A big-picture view of Smita Mathew's research output by year.
Declan McGuone, FRCPath Neuro, MBBCh
7Publications
9Citations
Publications
2025
TDP-43 Microvasculopathy Associated Astrogliosis and Blood-Brain Barrier Breach in the Context of Alzheimer’s Disease and COVID-19
Mathew S, McGuone D, Patel K, Gopal P. TDP-43 Microvasculopathy Associated Astrogliosis and Blood-Brain Barrier Breach in the Context of Alzheimer’s Disease and COVID-19. Physiology 2025, 40: 0537. DOI: 10.1152/physiol.2025.40.s1.0537.Peer-Reviewed Original ResearchAltmetricConceptsAD brainAlzheimer's diseaseBlood-brain barrier breachPTDP-43 inclusionsTDP-43Human AD brainsDorsolateral prefrontal cortexContext of Alzheimer's diseaseDevelopment of ADAge-related neurodegenerative diseasesPTDP-43Phosphorylated TDP-43Tight junction proteinsComorbid COVID-19SARS-CoV-2Prefrontal cortexInvasion of SARS-CoV-2Cognitive changesLoss of barrier integrityViral RNANeuropsychiatric problemsZonula occludens-1Increased transendothelial migrationMarker proteinsBlood-brain barrier
2024
Investigating the Role of TDP-43 Microvasculopathy on Neurovascular unit Function in the Setting of COVID-19 and Alzheimer’s Disease and Related Dementias
Mathew S, Gopal P. Investigating the Role of TDP-43 Microvasculopathy on Neurovascular unit Function in the Setting of COVID-19 and Alzheimer’s Disease and Related Dementias. Physiology 2024, 39: 1266. DOI: 10.1152/physiol.2024.39.s1.1266.Peer-Reviewed Original ResearchCitationsAltmetricConceptsTDP-43Alzheimer's diseaseRNA/DNA-binding protein TDP-43Human AD brainsUbiquitinated TDP-43TDP-43 fragmentsProtein TDP-43Non-autonomous effectsDevelopment of ADNeuronal tauAD brainPhosphorylated TDP-43Mammalian cellsTau expressionSARS-CoV-2Human brain samplesType IV collagenTDP-43 depositionNeurovascular unit functionProximity to capillariesPTDP-43Neurovascular unit cellsIV collagenTransendothelial migrationImmunofluorescence analysis
2023
Profiling of Differentiation Pattern of Neuro 2A (N2a) Cells upon Exposure to Dopamine, Corticosterone and Monosodium Glutamate
Mathew S, Keerikkattil J. Profiling of Differentiation Pattern of Neuro 2A (N2a) Cells upon Exposure to Dopamine, Corticosterone and Monosodium Glutamate. Physiology 2023, 38: 5727603. DOI: 10.1152/physiol.2023.38.s1.5727603.Peer-Reviewed Original ResearchConceptsExposure to dopamineGlial fibrillary acidic proteinTyrosine hydroxylaseNeural crest-derived cell lineMonosodium glutamateDopamine B-hydroxylaseDifferentiation of N2a cellsFibrillary acidic proteinCatecholaminergic pathwaysPathway of differentiationGroup ILineage trackingDopamineN2a cellsImmunocytochemical analysisCorticosteroneControl groupCell linesNeuro-2aDifferential effectsAcidic proteinType differentiation
2022
Lineage Tracking and Differentiation of Neuro 2A cells (N2a) upon exposure to Dopamine, Monosodium Glutamate and Corticosterone
Mathew S, Keerikkattil J. Lineage Tracking and Differentiation of Neuro 2A cells (N2a) upon exposure to Dopamine, Monosodium Glutamate and Corticosterone. The FASEB Journal 2022, 36 DOI: 10.1096/fasebj.2022.36.s1.r3706.Peer-Reviewed Original ResearchConceptsD1 receptor expressionMonosodium glutamate groupReceptor expressionDA groupCell deathExposure to dopamineMonosodium glutamate treatmentDopamine receptorsControl groupReward systemCorticosterone groupN2a cellsDopamineNeural crest-derived cell lineLate stages of apoptosisMonosodium glutamateCatecholaminergic pathwaysCorticosteroneStages of apoptosisStress hormonesCell to cell communicationDifferentiation of Neuro-2a cellsTreated with DASignal transduction pathwaysPattern of differentiation
2021
Activation of Cell Death Mediated by the Crosstalk between Caspase‐3 and Apoptosis Inducing Factor in the Brainstem upon Exposure to Monosodium Glutamate and Corticosterone
Mathew S, Keerikkattil J. Activation of Cell Death Mediated by the Crosstalk between Caspase‐3 and Apoptosis Inducing Factor in the Brainstem upon Exposure to Monosodium Glutamate and Corticosterone. The FASEB Journal 2021, 35 DOI: 10.1096/fasebj.2021.35.s1.03922.Peer-Reviewed Original ResearchCitationsConceptsApoptosis inducing factorCaspase-3Exposure to monosodium glutamateCell deathCorticosterone treatmentCellular stressIndependent of caspase activationCaspase-3 expressionCaspase-independent apoptotic pathwayNR3C1 expressionActivation of cell deathBrain stemCaspase-3-dependent mechanismCell death effectorsApoptotic marker genesApoptotic signaling cascadeExpression of glucocorticoid receptorNeuroendocrine stress axisDownregulated caspase-3 expressionDay 8Glia-like cellsInducing factorWhole cell lysatesDeath effectorsCaspase activation
2020
Impact of Monosodium Glutamate and Corticosterone in the Hippocampus: Glucocorticoid Regulation and Caspase‐3 mediated Microvascular and Neuronal Apoptosis
Mathew S, Joy K. Impact of Monosodium Glutamate and Corticosterone in the Hippocampus: Glucocorticoid Regulation and Caspase‐3 mediated Microvascular and Neuronal Apoptosis. The FASEB Journal 2020, 34: 1-1. DOI: 10.1096/fasebj.2020.34.s1.02786.Peer-Reviewed Original ResearchCitationsConceptsBlood-brain barrierExposure to monosodium glutamateGlucocorticoid receptorApoptotic signaling cascadeEnhanced glucocorticoid receptorDay 8Immediate response to stressEffects of corticosteroneResponse to stressCaspase-3Corticosterone exposureCorticosterone modelBody weightGlutamate modelGroup I control ratsMonosodium glutamate modelDentate gyrusBax-dependent apoptotic pathwayMonosodium glutamateHippocampusNeuronal apoptosisSignaling cascadesGene expressionGroup II ratsMale Wistar rats
2019
Monosodium Glutamate Triggers Neuroendocrine Stress Axis Leading to Apoptosis and Neural Progenitor Cell Activation
Mathew S, Joy K. Monosodium Glutamate Triggers Neuroendocrine Stress Axis Leading to Apoptosis and Neural Progenitor Cell Activation. The FASEB Journal 2019, 33: 554.1-554.1. DOI: 10.1096/fasebj.2019.33.1_supplement.554.1.Peer-Reviewed Original ResearchCitationsConceptsCRH gene expressionCRH neuronsHypothalamic-pituitary-adrenal (HPA) axisHPA axis sensitivityImmediate response to stressIncreased intrinsic excitabilityPlasma CORT concentrationsDay 8POMC mRNA expressionResponse to stressGlutamate inputsPlasma corticosteroneMonosodium glutamate exposureGlutamate modelMonosodium glutamateNeural stem/progenitor cell markersMale Wistar ratsBody weightMonosodium glutamate modelGroup I control ratsCORT concentrationsNegative feedback mechanismAxis sensitivityGroup II ratsIntrinsic excitability
News
Copy Link
Get In Touch
Copy Link