2021
Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts
Cho J, Kim S, Lee H, Rah W, Cho HC, Kim NK, Bae S, Shin DH, Lee MG, Park IH, Tanaka Y, Shin E, Yi H, Han JW, Hwang PTJ, Jun HW, Park HJ, Cho K, Lee SW, Jung JK, Levit RD, Sussman MA, Harvey RP, Yoon YS. Regeneration of infarcted mouse hearts by cardiovascular tissue formed via the direct reprogramming of mouse fibroblasts. Nature Biomedical Engineering 2021, 5: 880-896. PMID: 34426676, PMCID: PMC8809198, DOI: 10.1038/s41551-021-00783-0.Peer-Reviewed Original ResearchConceptsDirect reprogrammingMouse tail-tip fibroblastsBone morphogenetic protein 4Smooth muscle cellsTail-tip fibroblastsMuscle cellsSomatic cellsEndothelial cellsReprogrammingCell typesTissue-like structuresMouse fibroblastsProtein 4Gap junctionsCardiovascular tissuesVessel formationDisease modellingDrug discoveryImmature characteristicsFibroblastsCellsMouse heartsCardiomyocytesTissueHost cardiomyocytes
2020
Mural Cell-Specific Deletion of Cerebral Cavernous Malformation 3 in the Brain Induces Cerebral Cavernous Malformations
Wang K, Zhang H, He Y, Jiang Q, Tanaka Y, Park IH, Pober JS, Min W, Zhou HJ. Mural Cell-Specific Deletion of Cerebral Cavernous Malformation 3 in the Brain Induces Cerebral Cavernous Malformations. Arteriosclerosis Thrombosis And Vascular Biology 2020, 40: 2171-2186. PMID: 32640906, DOI: 10.1161/atvbaha.120.314586.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsApoptosis Regulatory ProteinsBrainCell CommunicationCell MovementCells, CulturedCoculture TechniquesEndothelial CellsFemaleFocal AdhesionsGene DeletionGenetic Predisposition to DiseaseHemangioma, Cavernous, Central Nervous SystemHumansMaleMembrane ProteinsMice, KnockoutMicrovesselsMyocytes, Smooth MusclePaxillinPericytesPhenotypeProtein StabilityProto-Oncogene ProteinsSignal TransductionConceptsCerebral cavernous malformationsBrain mural cellsCCM lesionsMural cellsCavernous malformationsSevere brain hemorrhageCCM pathogenesisSmooth muscle cellsWeeks of ageCell-specific deletionMural cell coverageBrain pericytesBrain hemorrhageNeonatal stageBrain vasculatureLesionsEntire brainMuscle cellsCerebral cavernous malformation 3Endothelial cellsMicePericytesSpecific deletionAdhesion formationPathogenesis
2012
Modeling Supravalvular Aortic Stenosis Syndrome With Human Induced Pluripotent Stem Cells
Ge X, Ren Y, Bartulos O, Lee MY, Yue Z, Kim KY, Li W, Amos PJ, Bozkulak EC, Iyer A, Zheng W, Zhao H, Martin KA, Kotton DN, Tellides G, Park IH, Yue L, Qyang Y. Modeling Supravalvular Aortic Stenosis Syndrome With Human Induced Pluripotent Stem Cells. Circulation 2012, 126: 1695-1704. PMID: 22914687, PMCID: PMC3586776, DOI: 10.1161/circulationaha.112.116996.Peer-Reviewed Original ResearchConceptsActin filament bundlesSmooth muscle αSmooth muscle cellsExtracellular signal-regulated kinase 1/2Muscle αFilament bundlesSignal-regulated kinase 1/2Four-nucleotide insertionDisease mechanismsContractile smooth muscle cellsStem cell linesPluripotent stem cellsPluripotent stem cell linePlatelet-derived growth factorRhoA signalingVascular smooth muscle cellsRecombinant proteinsKinase 1/2Elastin geneELN geneWilliams-Beuren syndromeBrdU analysisSupravalvular aortic stenosisStem cellsHigh proliferation rate