2011
FGF Signaling Expands Embryonic Cortical Surface Area by Regulating Notch-Dependent Neurogenesis
Rash BG, Lim HD, Breunig JJ, Vaccarino FM. FGF Signaling Expands Embryonic Cortical Surface Area by Regulating Notch-Dependent Neurogenesis. Journal Of Neuroscience 2011, 31: 15604-15617. PMID: 22031906, PMCID: PMC3235689, DOI: 10.1523/jneurosci.4439-11.2011.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnalysis of VarianceAnimalsBrainBromodeoxyuridineCaspase 3Cell CountCell DifferentiationCells, CulturedCerebral CortexDNA-Binding ProteinsElectroporationEmbryo, MammalianEye ProteinsFatty Acid-Binding Protein 7Fatty Acid-Binding ProteinsFibroblast Growth FactorsGene Expression Regulation, DevelopmentalGreen Fluorescent ProteinsHomeodomain ProteinsKi-67 AntigenMiceMice, TransgenicMutationNerve Tissue ProteinsNeurogenesisNeuronsPaired Box Transcription FactorsPAX6 Transcription FactorReceptors, Fibroblast Growth FactorReceptors, NotchRepressor ProteinsSignal TransductionStem CellsT-Box Domain ProteinsTranscription FactorsConceptsCortical neurogenesisCortical surface area expansionCortical surface expansionCortical surface areaGrowth factor receptorEmbryonic day 12.5Fibroblast growth factor receptorFGFR mutantsNormal miceCortical layer structureCortical developmentNeurogenic stagesDominant negative FGFRLoss of functionRadial progenitorsNeurogenesisNotch pathway genesSevere deficitsFactor receptorDay 12.5Notch pathwayMiceSimultaneous activationGreater proportionFGFR activity
2009
Fgfr1 Is Required for Cortical Regeneration and Repair after Perinatal Hypoxia
Fagel DM, Ganat Y, Cheng E, Silbereis J, Ohkubo Y, Ment LR, Vaccarino FM. Fgfr1 Is Required for Cortical Regeneration and Repair after Perinatal Hypoxia. Journal Of Neuroscience 2009, 29: 1202-1211. PMID: 19176828, PMCID: PMC2768410, DOI: 10.1523/jneurosci.4516-08.2009.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnalysis of VarianceAnimalsAnimals, NewbornBromodeoxyuridineCell ProliferationCerebral CortexCreatinineDNA-Binding ProteinsGlial Fibrillary Acidic ProteinHypoxiaMiceMice, Inbred C57BLMice, TransgenicNerve RegenerationNeurogenesisNeuronsOlfactory BulbParvalbuminsPhosphopyruvate HydrataseReceptor, Fibroblast Growth Factor, Type 1T-Box Domain ProteinsConceptsWild-type miceCortical neuronsOlfactory bulbSubventricular zoneChronic postnatal hypoxiaNeonatal hypoxic injuryPersistent behavioral deficitsExcitatory cortical neuronsSVZ cell proliferationCell proliferationPostnatal day 3Receptor 1 geneNormoxic miceOB neurogenesisReactive neurogenesisPerinatal hypoxiaPostnatal hypoxiaNeuronal recoveryFibroblast growth factor receptor 1 (FGFR1) geneHypoxic miceChronic hypoxiaGABAergic interneuronsHypoxic injuryResidual deficitsCortical regeneration
1997
Dlx-2 homeobox gene controls neuronal differentiation in primary cultures of developing basal ganglia
Ding M, Robel L, James A, Eisenstat D, Leckman J, Rubenstein J, Vaccarino F. Dlx-2 homeobox gene controls neuronal differentiation in primary cultures of developing basal ganglia. Journal Of Molecular Neuroscience 1997, 8: 93-113. PMID: 9188040, DOI: 10.1007/bf02736776.Peer-Reviewed Original ResearchMeSH KeywordsAnimalsAntibody SpecificityAntisense Elements (Genetics)Basal GangliaCell DifferentiationCell DivisionCells, CulturedCytoskeletal ProteinsDNA-Binding ProteinsFemaleGene Expression Regulation, DevelopmentalGenes, HomeoboxHomeodomain ProteinsIn Situ HybridizationMicrotubule-Associated ProteinsNeuritesNeuronsPhenotypePregnancyRatsRhombencephalonRNA-Binding ProteinsTelencephalonTranscription FactorsConceptsGene productsNeuronal differentiationMicrotubule-associated protein MAP1BHomeodomain-containing genesDlx-2Homeobox genesNeuronal polarityCellular phenotypesNeuronal lineageProtein MAP1BPrimary culturesCellular localizationMitotic cycleGlial fibrillary acidic proteinGenesProteinCell proliferationDendrite outgrowthExpression of MAP2MAP2-positive dendritesNeuronal dendritesNeurofilament subunitsExpressionMAP2 expressionMRNA
1994
Excitatory amino acid receptors in glial progenitor cells: Molecular and functional properties
Gallo V, Patneau D, Mayer M, Vaccarino F. Excitatory amino acid receptors in glial progenitor cells: Molecular and functional properties. Glia 1994, 11: 94-101. PMID: 7927651, DOI: 10.1002/glia.440110204.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsMeSH Keywords6-Cyano-7-nitroquinoxaline-2,3-dioneAnimalsCells, CulturedCerebral CortexDNA-Binding ProteinsEarly Growth Response Protein 1Gene Expression RegulationGenes, Immediate-EarlyGlutamic AcidImmediate-Early ProteinsKainic AcidMembrane PotentialsN-MethylaspartateNerve Tissue ProteinsNeurotoxinsOligodendrogliaRatsReceptors, GlutamateStem CellsTranscription FactorsConceptsCG-4 cellsAMPA receptor antagonist CNQXWhole-cell patch-clamp recordingsExcitatory amino acid receptorsProgenitor cellsAmino acid receptorsRat cerebral cortexPatch-clamp recordingsGlial progenitor cellsGlutamate receptor subunitsAgonists L-glutamateGlutamate-gated channelsImmediate early gene NGFIAntagonist CNQXCerebral cortexGABA antibodyPrimary cell linesGlutamate receptorsTransient elevationAcid receptorsReceptor subunitsOligodendrocyte lineageOligodendrocyte progenitorsL-glutamateKainate
1993
Induction of immediate early genes by cyclic AMP in primary cultures of neurons from rat cerebral cortex
Vaccarino FM, Hayward MD, Le HN, Hartigan DJ, Duman RS, Nestler EJ. Induction of immediate early genes by cyclic AMP in primary cultures of neurons from rat cerebral cortex. Brain Research 1993, 19: 76-82. PMID: 8103187, DOI: 10.1016/0169-328x(93)90151-e.Peer-Reviewed Original ResearchMeSH Keywords2,3,4,5-Tetrahydro-7,8-dihydroxy-1-phenyl-1H-3-benzazepineAnimalsAnimals, NewbornBucladesineCells, CulturedCerebral CortexColforsinCyclic AMPDNA-Binding ProteinsDopamine AgentsEarly Growth Response Protein 1ErgolinesGene Expression RegulationGenes, fosGenes, junGlutamatesGlutamic AcidImmediate-Early ProteinsImmunohistochemistryKineticsNeurogliaNeuronsQuinpiroleRatsRNA, MessengerSecond Messenger SystemsTranscription FactorsVasoactive Intestinal PeptideConceptsVasoactive intestinal peptideRat cerebral cortexCerebral cortexExcitatory amino acid receptor antagonistsDibutyryl cAMPAmino acid receptor antagonistsPrimary culturesC-fosDihydropyridine-sensitive calcium channelsAcid receptor antagonistsIEG inductionCalcium-free mediumCAMP second messenger pathwayIEGs c-fosSKF 38393Immediate-early gene transcription factorsIntestinal peptideReceptor antagonistReceptor agonistSecond messenger pathwaysCalcium channelsDifferentiated neuronsBrief stimulationImmediate early genesIEG expression
1992
Differential induction of immediate early genes by excitatory amino acid receptor types in primary cultures of cortical and striatal neurons
Vaccarino F, Hayward M, Nestler E, Duman R, Tallman J. Differential induction of immediate early genes by excitatory amino acid receptor types in primary cultures of cortical and striatal neurons. Brain Research 1992, 12: 233-241. PMID: 1347632, DOI: 10.1016/0169-328x(92)90089-t.Peer-Reviewed Original ResearchMeSH Keywords1-(5-Isoquinolinesulfonyl)-2-Methylpiperazine6-Cyano-7-nitroquinoxaline-2,3-dioneAnimalsAnimals, NewbornBlotting, NorthernCells, CulturedCerebral CortexCorpus StriatumDNA-Binding ProteinsEarly Growth Response Protein 1Gene Expression RegulationGenes, fosGenes, junGenes, RegulatorGlutamatesGlutamic AcidGlycineImmediate-Early ProteinsIsoquinolinesNeuronsPiperazinesProtein Kinase InhibitorsProto-OncogenesQuinoxalinesQuisqualic AcidRatsReceptors, AMPAReceptors, N-Methyl-D-AspartateReceptors, NeurotransmitterRNA, MessengerSulfonamidesTranscription FactorsConceptsProtein kinase C inhibitor HNGFI-A mRNAC-fosImmediate early genesPrimary culturesC-JunEarly genesGene mRNAN-methyl-D-aspartate receptor typeExcitatory amino acid receptor typesReceptor typesInhibitor HHydroxy-5-methylisoxazolepropionic acidExcitatory amino acid glutamateIEG expressionTransmembrane calcium influxDifferential inductionNMDA receptor channelsNMDA receptor activationAmino acid glutamateMRNAReceptor activationImmediate early gene mRNAsReceptor channelsCerebral cortex