Skip to Main Content

Liza Konnikova, MD/PhD, FAAP

Associate Professor
DownloadHi-Res Photo

Are You a Patient?

View this doctor's clinical profile on the Yale Medicine website for information about the services we offer and making an appointment.

View Doctor Profile

Additional Titles

CyTOF Core Director, Medicine

About

Titles

Associate Professor

CyTOF Core Director, Medicine

Biography

Dr. Konnikova's team focuses on the development of early life immunity particularly at barrier sites such as the GI tract and the maternal-fetal interface with a particular focus on T cell biology. Using multi-omic approaches, the group investigates how mucosal homeostasis is developed and what contributes to pathogenesis of diverse diseases such as sepsis, preterm labor, necrotizing enterocolitis (NEC), very early onset (VEO) and pediatric IBD. The Konnikova lab is further interested in how the microbiome and the associated metabolome regulate immune development and homeostasis at barrier sites. Her group is also interested in how early life events alter circulating immune cells. To this end, in collaboration with the NOuRISH team they are enrolling infants in a longitudinal study of peripheral blood development.

Appointments

Other Departments & Organizations

Education & Training

Postdoctoral Fellowship, Mucosal Immunology
Boston Children's Hospital (2017)
Neonatology Fellowship
Boston Children's Hospital (2013)
Residency
Boston Childrens Hospital (2010)
MD/PhD
Tufts University School of Medicine (2007)
BA
Brandeis University, Biology and Chemistry (1999)

Research

Overview

Dr. Konnikova is an Attending Neonatologist, Mucosal Immunologist, and an Associate Professor in Pediatrics, Immunobiology, and Obstetrics, Gynecology, and Reproductive Sciences. She is also a member of the Human and Translational Immunology Program and Program in Translational Biomedicine at the Yale School of Medicine. Her focus is on developing immunity at mucosal surfaces and its role in the pathogenesis of diverse diseases such as necrotizing enterocolitis (NEC), pediatric inflammatory bowel disease (IBD), sepsis, and preterm labor.

Using a systems biology approach and cutting-edge techniques such as imaging and suspension mass cytometry and single cell RNA sequencing, her group is currently focused on improving our understanding of how mucosal immunity develops at barrier sites such as the GI tract and the maternal-fetal interface and what goes awry to cause disease. To this end, she has established a large biorepository (over 5,000 samples) of control and disease cryopreserved intestinal and placental tissue. Using tissue from her biobank, her group have been able to study the development of human fetal intestinal immunity (Stras et al., Developmental Cell, 2019). In their pursuit to understand the source of antigens priming in utero T cells, the have established numeroud collaborations to study fetal intestinal microbiome and metabolome and were the first to show that human fetal intestinal tissue contains abundant and diverse bacterial metabolites in the absence of a detectable microbiome (Li and Toothaker et al, JCI Insight, 2020). Her group is also studying the development of enterocytes (Ergozi et al., Nature Medicine, 2021) where they have recently identified insulin-secreting enteroendocrine cells in the small fetal intestine with broad implications for gut development, immune regulation, and diabetes treatment.

Additionally, using a large cohort of over 100 patients with IBD, she has been able to characterize immune signatures differentiating ulcerative colitis and Crohn's disease (Mitsialis et al., Gastroenterology, 2020). Moreover, her group has identified unique immune populations in NEC (Olaloye et al., JEM, 2021). Finally, in the pursuit to better understand the contribution of fetal immunity to placental homeostasis, using a non-human primate model, her group has shown that fetal cells contribute to intra-amniotic inflammation (Toothaker et al., Frontiers, 2020). Similarly, her group has characterized the diverse immune-landscape of second trimester human placentas including fetal memory T cells (Development, 2022).

Medical Research Interests

Enterocolitis, Necrotizing; Gastrointestinal Microbiome; Immunity, Mucosal; Infant Nutrition Disorders; Infant, Premature; Inflammatory Bowel Diseases; Placenta

Research at a Glance

Yale Co-Authors

Frequent collaborators of Liza Konnikova's published research.

Publications

2024

2023

Clinical Care

Overview

Clinical Specialties

Neonatal - Perinatal Medicine

Get In Touch

Contacts

Events

Jan 202530Thursday