Anna Marie Pyle, PhD
Sterling Professor of Molecular, Cellular, and Developmental Biology and Professor of ChemistryCards
About
Titles
Sterling Professor of Molecular, Cellular, and Developmental Biology and Professor of Chemistry
Biography
Anna Marie Pyle is a Sterling Professor in the Departments of Molecular, Cellular and Developmental Biology and the Department of Chemistry.She has been a Howard Hughes Medical Institute Investigator since 1997. Dr. Pyle obtained her undergraduate degree in Chemistry from Princeton University and received her Ph.D. in Chemistry from Columbia University in 1990, where she worked with Professor Jacqueline Barton. Dr. Pyle was a postdoctoral fellow with Thomas Cech at the University of Colorado, forming her own research group in 1992 in the Department of Biochemistry and Molecular Biophysics at Columbia University Medical Center. In 2002, she moved to Yale University, where she leads a research group that specializes in structure and function of large RNA molecules, RNA remodeling enzymes and cellular RNA sensors. Dr. Pyle teaches the undergraduate Molecular Biology course and serves on the University Budget Committee at Yale. Dr. Pyle is the President of the RNA Society and she served as the Chair of the MSFA Study Section at the NIH after serving as permanent member on the MSFE, and MGB study sections. She is Vice-Chair of the Science and Technology Steering Committee at Brookhaven National Labs and she is on the Board of Telluride Science Research Center. She is involved in the development of RNA as a therapeutic and a drug target, serving on the SAB of Arrakis Therapeutics. Dr. Pyle is the author of over 190 publications and has mentored more than 40 graduate students and postdocs. The Pyle laboratory uses structural biology, enzymology and cell biology understand the structural complexity of large RNA molecules and the proteins that recognize them. She solved the first structures of pre-mRNA splicing machines, and led efforts to characterize RNA structures in noncoding RNAs and viral genomes. Dr. Pyle pioneered the study of RNA helicase enzymes and antiviral innate immune receptors in mammalian cells.
Appointments
Chemistry
ProfessorSecondary
Other Departments & Organizations
- Biochemistry, Quantitative Biology, Biophysics and Structural Biology (BQBS)
- Cancer Immunology
- Center for Infection and Immunity
- Center for RNA Science and Medicine
- Chemistry
- Computational Biology and Biomedical Informatics
- Molecular Cell Biology, Genetics and Development
- Molecular Virology
- Structural Biology
- Virology Laboratories
- Yale Cancer Center
- Yale Center for Immuno-Oncology
- Yale Combined Program in the Biological and Biomedical Sciences (BBS)
- Yale Ventures
Education & Training
- Postdoctoral Fellow
- University of Colorado (1992)
Research
Overview
In the Pyle Lab, we focus on two related questions: (1) How do large RNAs assemble into specific, stable tertiary structures? (2) How is RNA recognized and remodeled by ATP-dependent enzymes in the cell? Our studies involve a combination of solution biochemistry, enzymology, crystallography, and cell-based functional approaches. In parallel, we develop new computational methods for solving, analyzing and predicting RNA structures.
Group II Introns and Other Large RNA Tertiary Structures
Our studies of RNA tertiary architecture have focused on group II introns, which are large self-splicing ribozymes that are essential for gene expression in many organisms. Second only to the ribosome in size, group II introns have provided key insights into our understanding of RNA structure and evolution.
Initially, my laboratory used solution biochemistry and enzymology to characterize the chemical reaction mechanisms and architecture of group II introns. While this work yielded important insights into RNA splicing, we required high-resolution information on group II intron structures to define their functions precisely. We therefore spent many years attempting to identify a stable, homogeneous group II intron suitable for structural studies and were finally successful in crystallizing and solving the structure of a group IIC intron from the bacterium Oceanobacillus iheyensis (Oi IIC, ~400 nucleotides in size). This molecule, which is among the largest free RNA structures ever solved, revealed new architectural motifs and novel strategies for catalysis by RNA molecules (Figure 1, left).
We have since solved the Oi IIC structure as it moves through the stages of splicing, showing that both steps are catalyzed by a conserved RNA stem loop (domain 5, red in Figure 1) that contains a reactive metal ion cluster composed of magnesium and potassium ions. In addition, we captured a conformational change that occurs between the two steps of splicing, allowing the active site to exchange splice sites and carry out multistep reactions. Using these structures, we have adapted homology-modeling programs and applied them to RNA, thereby modeling the structures of much larger group II introns, such as the ai5γ group IIB intron from yeast mitochondria (Figure 1, right).
Group II introns are particularly useful model systems for understanding the eukaryotic spliceosome, which processes pre-mRNA molecules in the nucleus. It had long been hypothesized that U6 snRNA (small nuclear RNA) within eukaryotic spliceosomes behaves in a manner similar to domain 5 of group II introns. Using our crystal structures as a guide, we created a road map for identifying U6 catalytic groups and we predicted the molecular organization of the spliceosomal active site. Recent work by our colleagues in the spliceosome field has confirmed our predictions and shown that the spliceosome is a ribozyme that is organized much like a group II intron. This work provides a strong foundation for exploiting the potential of group II introns in gene therapy and for developing group II introns and spliceosomes as therapeutic targets.
Our work on group II introns has provided the methodologies and strategies needed for solving the structures of even larger RNA molecules, such as long intergenic noncoding RNAs (lincRNAs), that play a central role in epigenetic control and other processes.To that end, we have developed new methods for isolating, folding, and solving the structures of lncRNA molecules (large RNAs, usually > 2 kb).We recently published the first structural map of the regulatory lncRNA HOTAIR, and we are applying these approaches to identify the structural components of lncRNAs such as RepA and lincRNA p21.By obtaining some of the first structural information on lncRNAs, we aim to provide a mechanistic foundation for their elusive functions in the cell.
Protein Machines for RNA Remodeling and Sensing
Eukaryotic cells express a large family of RNA-dependent ATPases (SF2 ATPases/helicases) that contribute to every aspect of RNA metabolism. Many of these proteins unwind RNA structures during the remodeling of RNA-protein complexes (acting as helicases), while others stabilize RNA structures (behaving as annealing enzymes), and yet others serve as biosensors and signals for the detection of pathogenic RNA (signaling enzymes). These proteins share certain architectural elements, including a common set of conserved domains that selectively bind RNA targets and create an active-site cleft for ATP binding and hydrolysis. The ATP-dependent motions of this cleft are coupled to mechanical functions, such as the unwinding of RNA, or domain motions that promote cell signaling. In studying the nanomechanical behavior of these proteins, we have explored new areas of molecular virology and immunology.
We are particularly interested in SF2 RNA helicase enzymes that play a role in the life cycle of viruses. For example, the NS3 helicase from hepatitis C virus (HCV) plays a key role in the replication and packaging of HCV. We have elucidated the stepwise mechanism by which NS3 unwinds RNA molecules, and we have used it as a paradigm for understanding ATP-powered translocation within the SF2 family. We have begun to dissect the network of interactions between NS3 and other components of the HCV replication complex, and we have shown that this multifunctional enzyme plays many roles in HCV pathogenicity.
During early studies of a protein involved in cancer reversion (MDA-5), we identified a subfamily of SF2 proteins that displays highly unusual behavior. The ATPase activity of these proteins, which include proteins MDA-5, RIG-I, and metazoan Dicer, is specifically stimulated by duplex RNA, rather than single-stranded RNA, and it is not accompanied by RNA unwinding. Family members such as RIG-I and MDA-5 play a central role in the human innate immune system, and Dicer proteins are key components of small interfering RNA (siRNA)- and microRNA (miRNA)-processing systems. Despite the biological significance of all these proteins, there was no high-resolution information on their structures or RNA binding interfaces and limited information on their enzymology.
We set out to change this with an intensive study of RIG-I, a surveillance protein that detects and responds to viral RNA infection within vertebrate cells. Through in vitro and in vivo experiments, we demonstrated that a 5'-triphosphorylated 10–base pair RNA duplex is sufficient for activating RIG-I and inducing a robust interferon response in vertebrates. We solved the crystal structure of RIG-I in complex with a variety of ligands, revealing an intricate machine that mechanically couples viral RNA binding with ATPase activity and signaling (Figure 2). This work paves the way for the design of new therapeutics that modulate the innate immune response and for new vaccine adjuvants. It also lays the groundwork for mechanistic understanding and pharmacological control of innate immune receptors, Dicer and related proteins.
Molecular virology; Quantitative biology; Structural biology; RNA molecules
Medical Subject Headings (MeSH)
News & Links
Media
- Crystal structure of RIG-I in complex with RNA hairpin and Adenosine Diphosphate (top and side view, 4AY2). The color-coded key to domain organization is shown in the cartoon, below. RNA is yellow; ADP is pink. Hel1 and Hel2 are the conserved motor domains. The Pincer (P), Hel2i, and CTD are mechanical adapter domains. CARD1 and CARD2 are signaling domains. David Rawling
- Crystal structure of the Oi group IIC intron (left, 4FAR). Homology model of the yeast group IIB ai5γ ( (right). The catalytic center (domain 5) is shown in red, surrounded by intron domains (gray). The ai5γ model was built using the Oi core, biochemical constraints, and the RCrane modeling program. Srinivas Somarowthu
News
- February 22, 2024
Yale School of Medicine Receives a $575,000 Grant From PolyBio Research Foundation to Fund Long COVID Research
- November 22, 2023Source: YaleNews
Scientists Show How RNA Gets Spliced Correctly
- May 05, 2023
Pyle Is Elected to National Academy of Sciences
- January 25, 2023Source: Yale News
Out of the lab and into the world: Yale faculty bring research to market