2022
Reticular Pseudodrusen Status, ARMS2/HTRA1 Genotype, and Geographic Atrophy Enlargement Age-Related Eye Disease Study 2 Report 32
Agrón E, Domalpally A, Cukras C, Clemons T, Chen Q, Swaroop A, Lu Z, Chew E, Keenan T, Groups A. Reticular Pseudodrusen Status, ARMS2/HTRA1 Genotype, and Geographic Atrophy Enlargement Age-Related Eye Disease Study 2 Report 32. Ophthalmology 2022, 130: 488-500. PMID: 36481221, PMCID: PMC10121754, DOI: 10.1016/j.ophtha.2022.11.026.Peer-Reviewed Original ResearchConceptsARMS2 genotypeCentral maculaAtrophy enlargementRisk allelesHTRA1 risk allelesIndependent risk factorCentral involvementEye Disease StudyFundus autofluorescence imagesGeographic atrophy areaEnlargement rateMixed model regressionAtrophy areaCommercial disclosureRisk factorsFundus photographsAnnual visitsFaster progressionGA progressionGA incidenceDisease StudySimilar findingsAutofluorescence imagesPotential mediationFaster enlargementReticular Pseudodrusen: The Third Macular Risk Feature for Progression to Late Age-Related Macular Degeneration Age-Related Eye Disease Study 2 Report 30
Agrón E, Domalpally A, Cukras C, Clemons T, Chen Q, Lu Z, Chew E, Keenan T, Groups A. Reticular Pseudodrusen: The Third Macular Risk Feature for Progression to Late Age-Related Macular Degeneration Age-Related Eye Disease Study 2 Report 30. Ophthalmology 2022, 129: 1107-1119. PMID: 35660417, PMCID: PMC9509418, DOI: 10.1016/j.ophtha.2022.05.021.Peer-Reviewed Original ResearchConceptsLate age-related macular degenerationAge-related macular degenerationAge-related eye disease studyNeovascular age-related macular degenerationColor fundus photographsHazard ratioReticular pseudodrusenGeographic atrophyHigh riskRisk factorsSeverity ScalePresence of RPDProportional hazards regression analysisMacular Degeneration AgeClinical trial cohortIndependent risk factorEye Disease StudyHazards regression analysisImportant risk factorFundus autofluorescence imagesAMD severity scaleTrial cohortRisk calculatorClinical trialsFundus photographs
2019
A Deep Learning Approach for Automated Detection of Geographic Atrophy from Color Fundus Photographs
Keenan T, Dharssi S, Peng Y, Chen Q, Agrón E, Wong W, Lu Z, Chew E. A Deep Learning Approach for Automated Detection of Geographic Atrophy from Color Fundus Photographs. Ophthalmology 2019, 126: 1533-1540. PMID: 31358385, PMCID: PMC6810830, DOI: 10.1016/j.ophtha.2019.06.005.Peer-Reviewed Original Research
2018
DeepSeeNet: A Deep Learning Model for Automated Classification of Patient-based Age-related Macular Degeneration Severity from Color Fundus Photographs
Peng Y, Dharssi S, Chen Q, Keenan T, Agrón E, Wong W, Chew E, Lu Z. DeepSeeNet: A Deep Learning Model for Automated Classification of Patient-based Age-related Macular Degeneration Severity from Color Fundus Photographs. Ophthalmology 2018, 126: 565-575. PMID: 30471319, PMCID: PMC6435402, DOI: 10.1016/j.ophtha.2018.11.015.Peer-Reviewed Original ResearchMeSH KeywordsAgedAged, 80 and overArea Under CurveDeep LearningDiagnosis, Computer-AssistedDiagnostic Techniques, OphthalmologicalDisease ProgressionFemaleGeographic AtrophyHumansMaleMiddle AgedModels, TheoreticalPhotographyProspective StudiesReproducibility of ResultsRetinal DrusenRisk FactorsSensitivity and SpecificitySeverity of Illness IndexConceptsLate age-related macular degenerationAge-related macular degenerationColor fundus photographsSeverity ScaleRetinal specialistsSeverity scoreDeep learning modelsLarge drusenFundus photographsPigmentary abnormalitiesAge-related macular degeneration (AMD) severityPatient-based scoring systemsAMD risk factorsRisk of progressionLearning modelEye Disease StudyDeep learning systemGold-standard labelsRisk factorsMacular degenerationIndividual patientsGrading processPatient-based classificationPatientsScoring system