Deep-RPD-Net: A 3D Deep Network for Detection of Reticular Pseudodrusen on Optical Coherence Tomography Scans
Elsawy A, Keenan T, Thavikulwat A, Lu A, Bellur S, Mukherjee S, Agron E, Chen Q, Chew E, Lu Z. Deep-RPD-Net: A 3D Deep Network for Detection of Reticular Pseudodrusen on Optical Coherence Tomography Scans. Ophthalmology Science 2024, 100655. DOI: 10.1016/j.xops.2024.100655.Peer-Reviewed Original ResearchSemi-supervised learningReticular pseudodrusenOCT scansRetina specialistsOptical coherence tomographyArea under ROC curveSpectral-domain optical coherence tomographyBaseline modelOptical coherence tomography scansAge-Related Macular Degeneration StudyDetect reticular pseudodrusenFundus autofluorescence imagingDeep learning networkDeep networksBaseline methodsPretrained modelsModel decision-makingReading centerLearning networkHigh-performance metricsOCT studiesTomography scanAREDS2En faceCoherence tomographyAugmenting biomedical named entity recognition with general-domain resources
Yin Y, Kim H, Xiao X, Wei C, Kang J, Lu Z, Xu H, Fang M, Chen Q. Augmenting biomedical named entity recognition with general-domain resources. Journal Of Biomedical Informatics 2024, 159: 104731. PMID: 39368529, DOI: 10.1016/j.jbi.2024.104731.Peer-Reviewed Original ResearchBioNER datasetsMulti-task learningNER datasetsEntity typesBiomedical datasetsBaseline modelGeneral domain datasetsBiomedical language modelNeural network-basedYield performance improvementsBioNER modelsEntity recognitionBiomedical corporaHuman annotatorsLabel ambiguityLanguage modelTransfer learningF1 scoreBioNERHuman effortNetwork-basedBiomedical resourcesPerformance improvementDatasetSuperior performance