2020
JAK inhibition synergistically potentiates BCL2, BET, HDAC, and proteasome inhibition in advanced CTCL
Yumeen S, Mirza FN, Lewis JM, King ALO, Kim SR, Carlson KR, Umlauf SR, Surovtseva YV, Foss FM, Girardi M. JAK inhibition synergistically potentiates BCL2, BET, HDAC, and proteasome inhibition in advanced CTCL. Blood Advances 2020, 4: 2213-2226. PMID: 32437546, PMCID: PMC7252559, DOI: 10.1182/bloodadvances.2020001756.Peer-Reviewed Original ResearchConceptsCutaneous T-cell lymphomaJAK inhibitionCTCL cellsMalignant cutaneous T-cell lymphomasAdvanced cutaneous T-cell lymphomaTreatment of CTCLAvailable systemic treatment optionsSkin-homing T lymphocytesSystemic treatment optionsT-cell lymphomaCTCL cell linesHistone deacetylase inhibitionGeneralized cytotoxic effectExpression of Bcl2Advanced diseaseSuch patientsPeripheral bloodTreatment optionsJAK/STAT pathwayT lymphocytesPreclinical assessmentTherapeutic targetStrong potentiationExtrinsic apoptosis pathwayDeacetylase inhibition
2018
Model Colibactins Exhibit Human Cell Genotoxicity in the Absence of Host Bacteria
Shine EE, Xue M, Patel JR, Healy AR, Surovtseva YV, Herzon SB, Crawford JM. Model Colibactins Exhibit Human Cell Genotoxicity in the Absence of Host Bacteria. ACS Chemical Biology 2018, 13: 3286-3293. PMID: 30403848, PMCID: PMC7001666, DOI: 10.1021/acschembio.8b00714.Peer-Reviewed Original ResearchMeSH KeywordsAlkylationCell Line, TumorCross-Linking ReagentsDNADNA Breaks, Double-StrandedEscherichia coliHumansMutagensPeptidesPolyketidesConceptsHost bacteriaGenotoxic secondary metabolitesDNA double-strand breaksDNA interstrandSpecific protein domainsWild-type pathwayDouble-strand breaksFull molecular mechanismsCell culturesFamily of metabolitesHuman cell linesProtein domainsPresence of membranesModule skippingCellular phenotypesExtracellular supplementationNative pathwaysHuman cell culturesMolecular mechanismsSecondary metabolitesHuman cellsColibactinEfficient DNA interstrandObserved modulesPhenotype
2009
Conserved Telomere Maintenance Component 1 Interacts with STN1 and Maintains Chromosome Ends in Higher Eukaryotes
Surovtseva Y, Churikov D, Boltz K, Song X, Lamb J, Warrington R, Leehy K, Heacock M, Price C, Shippen D. Conserved Telomere Maintenance Component 1 Interacts with STN1 and Maintains Chromosome Ends in Higher Eukaryotes. Molecular Cell 2009, 36: 207-218. PMID: 19854131, PMCID: PMC2768651, DOI: 10.1016/j.molcel.2009.09.017.Peer-Reviewed Original ResearchMeSH KeywordsAnaphaseArabidopsisArabidopsis ProteinsCell Line, TumorChromosomal Proteins, Non-HistoneChromosomes, PlantConserved SequenceEukaryotic CellsGenomic InstabilityHumansIn Situ Hybridization, FluorescenceMutationNucleic Acid ConformationProtein BindingRecombination, GeneticTelomereTelomere-Binding ProteinsConceptsG-overhangsOB-fold domainDNA damage responseArabidopsis mutantsMulticellular organismsHigher eukaryotesTEN1 (CST) complexChromosome endsHuman CTC1Telomere integrityTelomere maintenanceDiverse speciesDamage responseEnd fusionsChromatin bridgesTelomere lossRNAi triggersDevelopmental defectsCTC1Stn1PlantsEukaryotesOrthologsVertebratesMutants