2024
Dual roles for a tick protein disulfide isomerase during the life cycle of the Lyme disease agent.
Tang X, Cui Y, Namarra U, Tian X, Rivas-Giorgi F, Fikrig E. Dual roles for a tick protein disulfide isomerase during the life cycle of the Lyme disease agent. MBio 2024, e0175424. PMID: 39470213, DOI: 10.1128/mbio.01754-24.Peer-Reviewed Original ResearchProtein disulfide isomeraseLyme disease agentDisulfide isomeraseBlood-feeding vectorsExtracellular pathogensGene expressionInvasion of host cellsThiol-disulfide oxidoreductasesDisease agentsGroup of enzymesStages of bacterial infectionVirulence factorsLife cycleChaperone activityMammalian hostsHost cellsBlood-feeding ticksIsomeraseMicrobial infectionsColonized ticksPathogensDiverse infectionsMicrobial invasionInfection of miceVector-borne diseasesVaccination to Prevent Lyme Disease: A Movement Towards Anti-Tick Approaches
Johnson E, Hart T, Fikrig E. Vaccination to Prevent Lyme Disease: A Movement Towards Anti-Tick Approaches. The Journal Of Infectious Diseases 2024, 230: s82-s86. PMID: 39140718, PMCID: PMC11322886, DOI: 10.1093/infdis/jiae202.Peer-Reviewed Original ResearchConceptsTransmission of tick-borne pathogensTick-borne pathogensIxodes spp ticksInhibited tick feedingTick feedingDisease vaccineTick vectorWildlife reservoirsOuter surface protein ALyme disease vaccineLyme diseaseTicksBorrelia burgdorferiLyme disease casesPreventing Lyme diseasePathogensFood and Drug AdministrationSurface protein AOspA-based vaccinesVaccineFeedingLymeProtein AFoodPrevent transmissionBacterial reprogramming of tick metabolism impacts vector fitness and susceptibility to infection
Samaddar S, Rolandelli A, O’Neal A, Laukaitis-Yousey H, Marnin L, Singh N, Wang X, Butler L, Rangghran P, Kitsou C, Cabrera Paz F, Valencia L, R. Ferraz C, Munderloh U, Khoo B, Cull B, Rosche K, Shaw D, Oliver J, Narasimhan S, Fikrig E, Pal U, Fiskum G, Polster B, Pedra J. Bacterial reprogramming of tick metabolism impacts vector fitness and susceptibility to infection. Nature Microbiology 2024, 9: 2278-2291. PMID: 38997520, DOI: 10.1038/s41564-024-01756-0.Peer-Reviewed Original ResearchMetabolic reprogrammingInfection of tick cellsInvestigate metabolic reprogrammingTick cellsLyme disease spirochete Borrelia burgdorferiSusceptibility to infectionArthropod-borne pathogensMetabolomics approachRickettsia buchneriHuman pathogensMetabolite allocationDiminished survivalBacterium Anaplasma phagocytophilumSpirochete Borrelia burgdorferiAcid metabolismA. phagocytophilum infectionInterspecies relationshipsElevated levelsInfectionFeeding impairmentHuman granulocytic anaplasmosisMetabolic responseArthropod vectorsI. scapularisPathogensAn atlas of human vector-borne microbe interactions reveals pathogenicity mechanisms
Hart T, Sonnert N, Tang X, Chaurasia R, Allen P, Hunt J, Read C, Johnson E, Arora G, Dai Y, Cui Y, Chuang Y, Yu Q, Rahman M, Mendes M, Rolandelli A, Singh P, Tripathi A, Ben Mamoun C, Caimano M, Radolf J, Lin Y, Fingerle V, Margos G, Pal U, Johnson R, Pedra J, Azad A, Salje J, Dimopoulos G, Vinetz J, Carlyon J, Palm N, Fikrig E, Ring A. An atlas of human vector-borne microbe interactions reveals pathogenicity mechanisms. Cell 2024, 187: 4113-4127.e13. PMID: 38876107, DOI: 10.1016/j.cell.2024.05.023.Peer-Reviewed Original ResearchCell invasionHost-microbe interactionsArthropod-borne pathogensHost sensingMicrobe interactionsTranscriptional regulationLyme disease spirocheteMicrobial interactionsExtracellular proteinsMicrobial pathogenesisEpidermal growth factorTissue colonizationEnvironmental cuesBacterial selectivityIntracellular pathogensPutative interactionsNext-generation therapeuticsPathogensFunctional investigationsInteractomeVector-borne diseasesImmune evasionPathogenic mechanismsStrainUnmet medical need
2023
Frankenbacteriosis targeting interactions between pathogen and symbiont to control infection in the tick vector
Mazuecos L, Alberdi P, Hernández-Jarguín A, Contreras M, Villar M, Cabezas-Cruz A, Simo L, González-García A, Díaz-Sánchez S, Neelakanta G, Bonnet S, Fikrig E, de la Fuente J. Frankenbacteriosis targeting interactions between pathogen and symbiont to control infection in the tick vector. IScience 2023, 26: 106697. PMID: 37168564, PMCID: PMC10165458, DOI: 10.1016/j.isci.2023.106697.Peer-Reviewed Original ResearchHuman granulocytic anaplasmosisPathogen infection/transmissionTick-borne pathogensTick-borne diseasesInfection/transmissionTick vectorGranulocytic anaplasmosisWildtype populationTick microbiotaPathogensModel pathogenTransovarialAnaplasmosisMSP4TicksAssociated reductionCompetitionLarvaeDisease riskParatransgenesisSymbiontsInfectionCommensal bacteriaBacteriaControl
2021
Grappling with the tick microbiome
Narasimhan S, Swei A, Abouneameh S, Pal U, Pedra JHF, Fikrig E. Grappling with the tick microbiome. Trends In Parasitology 2021, 37: 722-733. PMID: 33962878, PMCID: PMC8282638, DOI: 10.1016/j.pt.2021.04.004.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus StatementsConceptsTick microbiomeRelated tick speciesMultiple human pathogensHost preferenceSequencing technologiesTick biologyHuman pathogensMicrobiomeMechanistic insightsTick speciesLife cycleIxodes pacificusIxodes scapularisIxodid ticksCausative agentNorth AmericaBorrelia burgdorferiPredominant vectorBiological variablesHabitatsPacificusBiologySpeciesPathogens
2020
Naturally Acquired Resistance to Ixodes scapularis Elicits Partial Immunity against Other Tick Vectors in a Laboratory Host
Lynn GE, Diktas H, DePonte K, Fikrig E. Naturally Acquired Resistance to Ixodes scapularis Elicits Partial Immunity against Other Tick Vectors in a Laboratory Host. American Journal Of Tropical Medicine And Hygiene 2020, 104: 175-183. PMID: 33258439, PMCID: PMC7790098, DOI: 10.4269/ajtmh.20-0776.Peer-Reviewed Original ResearchConceptsTick speciesTick vectorEngorgement weightHost resistanceMultiple tick speciesAnti-tick vaccinesImportant tick speciesImportant tick vectorAbility of ticksTransmission of pathogensTick resistanceTick challengeTick attachmentTick salivaTicksForm of immunityLaboratory hostPrimary speciesEconomic productionGuinea pig modelNorth AmericaSpeciesPartial immunityPathogensHostFractionation of tick saliva reveals proteins associated with the development of acquired resistance to Ixodes scapularis
Černý J, Lynn G, DePonte K, Ledizet M, Narasimhan S, Fikrig E. Fractionation of tick saliva reveals proteins associated with the development of acquired resistance to Ixodes scapularis. Vaccine 2020, 38: 8121-8129. PMID: 33168347, DOI: 10.1016/j.vaccine.2020.10.087.Peer-Reviewed Original ResearchConceptsTick-borne pathogensTick immunityTick salivaTick vaccinesMultiple tick-borne pathogensIxodes scapularisGuinea pig modelTick salivary antigensTick rejectionTick Ixodes scapularisPig modelTick feedingNortheast USASalivary antigensGlobal medical problemDevelopment of vaccinesTicksMain vectorPathogensSaliva fractionsScapularisMedical problemsImmunityVaccineSalivaEpigenetic Regulation of Tick Biology and Vectorial Capacity
De S, Kitsou C, Sonenshine DE, Pedra JHF, Fikrig E, Kassis JA, Pal U. Epigenetic Regulation of Tick Biology and Vectorial Capacity. Trends In Genetics 2020, 37: 8-11. PMID: 33020021, PMCID: PMC8008791, DOI: 10.1016/j.tig.2020.09.012.Peer-Reviewed Original ResearchIxodes scapularis saliva components that elicit responses associated with acquired tick-resistance
Narasimhan S, Kurokawa C, Diktas H, Strank NO, Černý J, Murfin K, Cao Y, Lynn G, Trentleman J, Wu MJ, DePonte K, Kantor F, Anguita J, Hovius J, Fikrig E. Ixodes scapularis saliva components that elicit responses associated with acquired tick-resistance. Ticks And Tick-borne Diseases 2020, 11: 101369. PMID: 31924502, PMCID: PMC7382422, DOI: 10.1016/j.ttbdis.2019.101369.Peer-Reviewed Original ResearchConceptsTick-borne diseasesSalivary antigensAnti-tick vaccine candidatesIxodes scapularisTick salivary antigensTransmission of pathogensTick infestationTick rejectionTick proteinsViable vaccine targetsTick feedingPathogen transmissionRise worldTicksHost immune responseUrgent public health needScapularisMammalian hostsPathogensPublic health needsVaccine candidatesImmune responseSalivary glycoproteinsFeedingVaccine targeting
2018
Host-specific expression of Ixodes scapularis salivary genes
Narasimhan S, Booth CJ, DePonte K, Wu MJ, Liang X, Mohanty S, Kantor F, Fikrig E. Host-specific expression of Ixodes scapularis salivary genes. Ticks And Tick-borne Diseases 2018, 10: 386-397. PMID: 30545615, DOI: 10.1016/j.ttbdis.2018.12.001.Peer-Reviewed Original ResearchConceptsVector-host interactionsTick infestationI. scapularisReservoir hostsNon-reservoir hostsHost-specific expressionRodent reservoir hostsInfected ticksPathogen transmissionZoonotic cycleSalivary genesIxodes scapularisTicksNatural hostScapularisInfestationTick biteLyme diseaseBorrelia burgdorferiLarval stagesPathogensHostPeromyscus leucopusStrong immune responseSalivary transcriptomeA potent prolyl tRNA synthetase inhibitor antagonizes Chikungunya and Dengue viruses
Hwang J, Jiang A, Fikrig E. A potent prolyl tRNA synthetase inhibitor antagonizes Chikungunya and Dengue viruses. Antiviral Research 2018, 161: 163-168. PMID: 30521835, PMCID: PMC6345585, DOI: 10.1016/j.antiviral.2018.11.017.Peer-Reviewed Original ResearchConceptsDengue virusSignificant morbiditySafe vaccineSynthetase inhibitionEndemic areasSynthetase inhibitorFlavivirus genusMosquito-bornePotent antagonistHost factorsGroup of pathogensVirusMultiple virusesChikungunyaHematophagous arthropod vectorsAedes sppArthropod vectorsEpidemic pathogensAdditional approachesMorbidityPathogensVaccineAntagonistMortalityHuman populationVector Immunity and Evolutionary Ecology: The Harmonious Dissonance
Shaw DK, Tate AT, Schneider DS, Levashina EA, Kagan JC, Pal U, Fikrig E, Pedra JHF. Vector Immunity and Evolutionary Ecology: The Harmonious Dissonance. Trends In Immunology 2018, 39: 862-873. PMID: 30301592, PMCID: PMC6218297, DOI: 10.1016/j.it.2018.09.003.Peer-Reviewed Original ResearchConceptsVector immunityEvolutionary ecologyEvolutionary forcesEvolutionary ecologistsGenetic plasticityVector-borne pathogensArthropod populationsAbiotic factorsMolecular immunologistsMicrobial assaultImmune systemInnate defenseRecent scientific breakthroughsEcologyEcologistsImmune responsePathogenicityImmunityPathogensPlasticityDefenseToleranceResistanceScientific breakthroughsVisualization of Microbiota in Tick Guts by Whole-mount In Situ Hybridization.
Moss CE, Robson A, Fikrig E, Narasimhan S. Visualization of Microbiota in Tick Guts by Whole-mount In Situ Hybridization. Journal Of Visualized Experiments 2018 PMID: 29912204, PMCID: PMC6101453, DOI: 10.3791/57758.Peer-Reviewed Original ResearchConceptsTick gutComplex microbial communitiesSitu hybridizationSequencing-based methodsTick genesVector microbiotaMicrobial communitiesParticular bacterial speciesRNA transcriptsResident microorganismsTarget RNAInterspecies interactionsBacterial speciesArthropod vectorsResident bacteriaHuman pathogensMicrobiota interactionsPathogen transmissionTick transmissionIxodes scapularis ticksVector-borne diseasesTick feedingPathogensIntact tissueMicrobiota
2017
A Tick Antivirulence Protein Potentiates Antibiotics against Staphylococcus aureus
Abraham NM, Liu L, Jutras BL, Murfin K, Acar A, Yarovinsky TO, Sutton E, Heisig M, Jacobs-Wagner C, Fikrig E. A Tick Antivirulence Protein Potentiates Antibiotics against Staphylococcus aureus. Antimicrobial Agents And Chemotherapy 2017, 61: 10.1128/aac.00113-17. PMID: 28438938, PMCID: PMC5487661, DOI: 10.1128/aac.00113-17.Peer-Reviewed Original ResearchConceptsNovel alternative therapeutic strategyAlternative therapeutic strategiesEfficacy of antibioticsTherapeutic strategiesTransgenic miceBacterial infectionsInfection modelDifferent antibioticsAntibioticsAntibiotic resistanceStaphylococcus aureusPotency of antibioticsClinical pathogensPeptides representativeImproved permeationPathogensPotent antibiofilm propertiesIAFGPChapter 14 Translation of Saliva Proteins Into Tools to Prevent Vector-Borne Disease Transmission
Narasimhan S, Schleicher T, Fikrig E. Chapter 14 Translation of Saliva Proteins Into Tools to Prevent Vector-Borne Disease Transmission. 2017, 249-300. DOI: 10.1016/b978-0-12-805360-7.00014-9.ChaptersPathogen transmissionArthropod vectorsVector-pathogen interactionsBlood mealVector salivaVector-Borne Disease TransmissionTransmit pathogensMolecular understandingHematophagous arthropodsHost immune responseMicrobesArthropodsImmune responseSalivary proteinsPathogensHostArthropod salivaMicroorganism transmission
2015
Tick microbiome: the force within
Narasimhan S, Fikrig E. Tick microbiome: the force within. Trends In Parasitology 2015, 31: 315-323. PMID: 25936226, PMCID: PMC4492851, DOI: 10.1016/j.pt.2015.03.010.Peer-Reviewed Reviews, Practice Guidelines, Standards, and Consensus Statements
2014
Antivirulence Properties of an Antifreeze Protein
Heisig M, Abraham NM, Liu L, Neelakanta G, Mattessich S, Sultana H, Shang Z, Ansari JM, Killiam C, Walker W, Cooley L, Flavell RA, Agaisse H, Fikrig E. Antivirulence Properties of an Antifreeze Protein. Cell Reports 2014, 9: 417-424. PMID: 25373896, PMCID: PMC4223805, DOI: 10.1016/j.celrep.2014.09.034.Peer-Reviewed Original ResearchConceptsAntifreeze proteinsDiverse bacteriaProtein bindsWild-type animalsBiofilm formationAntivirulence agentsIAFGPMethicillin-resistant Staphylococcus aureusHost controlProteinAntifreeze glycoproteinsIxodes scapularisAntivirulence propertiesBacteriaSeptic shockTherapeutic strategiesBacterial infectionsInfectious diseasesMicrobesStaphylococcus aureusFliesBindsInfectionCatheter tubingPathogensRole of the Vector in Arbovirus Transmission
Conway MJ, Colpitts TM, Fikrig E. Role of the Vector in Arbovirus Transmission. Annual Review Of Virology 2014, 1: 71-88. PMID: 26958715, PMCID: PMC7809425, DOI: 10.1146/annurev-virology-031413-085513.Peer-Reviewed Original ResearchDisease vectorsDominant lethal geneArbovirus transmissionTransmission of arbovirusesLethal genesMolecular detailsTransgenic mosquitoesHost-seeking behaviorMosquito populationsArboviral diseasesGenomicsProteomicsPrevalence of diseaseNovel strategyGenesArbovirusesMicrobesImmunological controlGrowthVectorDiseaseSignificant diseasePathogensHostRole
2009
Antibodies against a Tick Protein, Salp15, Protect Mice from the Lyme Disease Agent
Dai J, Wang P, Adusumilli S, Booth CJ, Narasimhan S, Anguita J, Fikrig E. Antibodies against a Tick Protein, Salp15, Protect Mice from the Lyme Disease Agent. Cell Host & Microbe 2009, 6: 482-492. PMID: 19917502, PMCID: PMC2843562, DOI: 10.1016/j.chom.2009.10.006.Peer-Reviewed Original ResearchConceptsArthropod-borne pathogensTick-borne BorreliaTick salivary proteinsTick proteinsB. burgdorferiLyme diseaseDisease agentsTick-borne illnessB. burgdorferi infectionLyme disease agentHuman vaccinesSalp15Infection of miceB. burgdorferi antigensMicrobial toxinsMammalian hostsBorrelia burgdorferiPathogensMechanism of actionBurgdorferi infectionProtect miceMedical importanceBurgdorferiProtective capacityMice