2013
Whole-exome sequencing identifies a novel somatic mutation in MMP8 associated with a t(1;22)-acute megakaryoblastic leukemia
Kim Y, Schulz VP, Satake N, Gruber TA, Teixeira AM, Halene S, Gallagher PG, Krause DS. Whole-exome sequencing identifies a novel somatic mutation in MMP8 associated with a t(1;22)-acute megakaryoblastic leukemia. Leukemia 2013, 28: 945-948. PMID: 24157583, PMCID: PMC3981934, DOI: 10.1038/leu.2013.314.Peer-Reviewed Original Research
2006
Allelic dropout in long QT syndrome genetic testing: A possible mechanism underlying false-negative results
Tester D, Cronk L, Carr J, Schulz V, Salisbury B, Judson R, Ackerman M. Allelic dropout in long QT syndrome genetic testing: A possible mechanism underlying false-negative results. Heart Rhythm 2006, 3: 815-821. PMID: 16818214, DOI: 10.1016/j.hrthm.2006.03.016.Peer-Reviewed Original ResearchMeSH KeywordsAdolescentAdultAllelesChildChromatography, High Pressure LiquidDNADNA Mutational AnalysisERG1 Potassium ChannelEther-A-Go-Go Potassium ChannelsExonsFalse Negative ReactionsFemaleGene FrequencyHumansKCNQ1 Potassium ChannelLong QT SyndromeMaleMuscle ProteinsMutationNAV1.5 Voltage-Gated Sodium ChannelPolymerase Chain ReactionPolymorphism, Single NucleotidePotassium Channels, Voltage-GatedRetrospective StudiesSodium ChannelsConceptsLong QT syndromeGenetic testingSingle nucleotide polymorphismsIntronic single nucleotide polymorphismLQTS-causing mutationsCongenital long QT syndromeCommon intronic single nucleotide polymorphismHigh clinical probabilityLong QT syndrome genetic testingLQTS genetic testingCardiac channel genes
2001
Haplotype Variation and Linkage Disequilibrium in 313 Human Genes
Stephens J, Schneider J, Tanguay D, Choi J, Acharya T, Stanley S, Jiang R, Messer C, Chew A, Han J, Duan J, Carr J, Lee M, Koshy B, Kumar A, Zhang G, Newell W, Windemuth A, Xu C, Kalbfleisch T, Shaner S, Arnold K, Schulz V, Drysdale C, Nandabalan K, Judson R, Ruaño G, Vovis G. Haplotype Variation and Linkage Disequilibrium in 313 Human Genes. Science 2001, 293: 489-493. PMID: 11452081, DOI: 10.1126/science.1059431.Peer-Reviewed Original ResearchConceptsSingle nucleotide polymorphismsPairs of SNPsLinkage disequilibriumVariable single nucleotide polymorphismsPatterns of variationIndividual single nucleotide polymorphismsHaplotype variationBiological traitsHuman genesDiverse ancestryDifferent haplotypesGenesNucleotide polymorphismsHuman populationUnrelated individualsHaplotypesRecent expansionPopulation frequencyDisequilibriumTraitsAncestryImportant implicationsInformation contentPolymorphismPopulation
1996
Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells
Schulz V, Zakian V, Ogburn C, McKay J, Jarzebowicz A, Martin G, Edland S. Accelerated loss of telomeric repeats may not explain accelerated replicative decline of Werner syndrome cells. Human Genetics 1996, 97: 750-754. PMID: 8641691, DOI: 10.1007/bf02346184.Peer-Reviewed Original ResearchConceptsTRF lengthMean TRF lengthWerner syndromeDiabetes mellitusControl subjectsWS cellsReplicative declineSubset of cellsOcular cataractsGeriatric disordersPremature onsetMean lengthSenescent controlsReplicative capacitySenescent cellsEarly passagesAccelerated lossAccelerated rateChromosomal translocationsNormal somatic cellsWerner syndrome cellsReplicative potentialCellsCell cycle