2021
Selective Heterogeneous Transfer Hydrogenation from Tertiary Amines to Alkynes
Roeder G, Kelly H, Yang G, Bauer T, Haller G, Batista V, Baráth E. Selective Heterogeneous Transfer Hydrogenation from Tertiary Amines to Alkynes. ACS Catalysis 2021, 11: 5405-5415. DOI: 10.1021/acscatal.0c05186.Peer-Reviewed Original ResearchPt/CPd/CTertiary aminesHydrogenation mechanismDensity functional theory calculationsTransfer hydrogenation reactionHydrogen transfer reactionsNoble metal surfacesFunctional theory calculationsTransfer hydrogenation mechanismHigh rate constantsAmine partnersHydrogenation reactionsTransfer hydrogenationCis selectivityNoble metalsH-donorN-diisopropylethylamineTransfer reactionsSurface coverageTheory calculationsAlkynesMetal surfaceSubstituted alkanesInert conditions
2018
Atmospheric β‑Caryophyllene-Derived Ozonolysis Products at Interfaces
Bé A, Chase H, Liu Y, Upshur M, Zhang Y, Tuladhar A, Chase Z, Bellcross A, Wang H, Wang Z, Batista V, Martin S, Thomson R, Geiger F. Atmospheric β‑Caryophyllene-Derived Ozonolysis Products at Interfaces. ACS Earth And Space Chemistry 2018, 3: 158-169. DOI: 10.1021/acsearthspacechem.8b00156.Peer-Reviewed Original ResearchΒ-caryophyllene oxidation productsSecondary organic materialOxidation productsVibrational sum frequency generation spectroscopyΒ-caryophyllene aldehydeSum frequency generation spectroscopyDensity functional theory calculationsSurface vibrational spectraFrequency generation spectroscopyGas-phase moleculesSame oxidation productsFunctional theory calculationsSurface tension depressionCaryophyllonic acidOrganic synthesisSOA particlesSFG spectroscopyPolar moietiesOzonolysis productsGeneration spectroscopyAerosol synthesisTheory calculationsVibrational spectraQuartz surfaceChemical origin
2017
Mechanistic Insights into Surface Chemical Interactions between Lithium Polysulfides and Transition Metal Oxides
Zhong Y, Yang K, Liu W, He P, Batista V, Wang H. Mechanistic Insights into Surface Chemical Interactions between Lithium Polysulfides and Transition Metal Oxides. The Journal Of Physical Chemistry C 2017, 121: 14222-14227. DOI: 10.1021/acs.jpcc.7b04170.Peer-Reviewed Original ResearchLithium polysulfidesLi-S batteriesTransition metal oxidesMetal oxidesChemical interactionHigh-performance Li-S batteriesElectrode/electrolyte interfaceX-ray photoelectron spectroscopyElectrochemical energy storageDensity functional theory calculationsLi-O interactionsMetal–sulfur interactionsSurface chemical interactionsLi-ion batteriesFunctional theory calculationsOxides of MnSulfur cathodeElectrode surfaceDevelopment of materialsElectrolyte interfaceIon batteriesCycle lifePhotoelectron spectroscopyTheory calculationsBinding modes
2016
Formate to Oxalate: A Crucial Step for the Conversion of Carbon Dioxide into Multi‐carbon Compounds
Lakkaraju P, Askerka M, Beyer H, Ryan C, Dobbins T, Bennett C, Kaczur J, Batista V. Formate to Oxalate: A Crucial Step for the Conversion of Carbon Dioxide into Multi‐carbon Compounds. ChemCatChem 2016, 8: 3453-3457. DOI: 10.1002/cctc.201600765.Peer-Reviewed Original ResearchMulti-carbon compoundsDensity functional theory calculationsSelective catalytic conversionIndustrial-scale synthesisFunctional theory calculationsChain reaction mechanismCatalytic performanceIon catalystAlkali formateIon catalysisConversion of formateBond formationCatalytic conversionQuantitative conversionIon intermediateReaction conditionsRaman spectroscopyTheory calculationsReaction mechanismCatalytic mechanismSodium hydrideOxalate saltsSodium formateFormateEfficient conversion
2011
Covalent Attachment of a Rhenium Bipyridyl CO2 Reduction Catalyst to Rutile TiO2
Anfuso C, Snoeberger R, Ricks A, Liu W, Xiao D, Batista V, Lian T. Covalent Attachment of a Rhenium Bipyridyl CO2 Reduction Catalyst to Rutile TiO2. Journal Of The American Chemical Society 2011, 133: 6922-6925. PMID: 21504161, DOI: 10.1021/ja2013664.Peer-Reviewed Original ResearchSum frequency generation spectroscopyCO2 reduction catalystsDensity functional theory calculationsFrequency generation spectroscopyFunctional theory calculationsReduction catalystCarboxylate groupsGeneration spectroscopyTheory calculationsCovalent attachmentLinkage motifsCovalent bindingCatalystCatalysisMoietySpectroscopySurfaceTiO2Complexes
2009
Interfacial Electron Transfer in TiO2 Surfaces Sensitized with Ru(II)−Polypyridine Complexes
Jakubikova E, Snoeberger R, Batista V, Martin R, Batista E. Interfacial Electron Transfer in TiO2 Surfaces Sensitized with Ru(II)−Polypyridine Complexes. The Journal Of Physical Chemistry A 2009, 113: 12532-12540. PMID: 19594155, DOI: 10.1021/jp903966n.Peer-Reviewed Original ResearchConceptsInterfacial electron transferElectronic excitationBidentate modeElectron transferDye-sensitized solar cellsElectronic statesConventional dye-sensitized solar cellsDensity functional theory calculationsVisible-light photoexcitationSolar cellsStable covalent bondsElectron transfer mechanismInterfacial electron-transfer mechanismVisible light excitationFunctional theory calculationsQuantum dynamics simulationsExcited electronic statesPolypyridine complexesPhosphonate linkersAdsorbate moleculesCovalent bondsIET efficiencyTiO2 surfaceTime scalesTheory calculations