2020
Nanotechnology for catalysis and solar energy conversion
Banin U, Waiskopf N, Hammarstrm L, Boschloo G, Freitag M, Johansson E, S J, Tian H, Johnston M, Herz L, Milot R, Kanatzidis M, Ke W, Spanopoulos I, Kohlstedt K, Schatz G, Lewis N, Meyer T, Nozik A, Beard M, Armstrong F, Megarity C, Schmuttenmaer C, Batista V, Brudvig G. Nanotechnology for catalysis and solar energy conversion. Nanotechnology 2020, 32: 042003. PMID: 33155576, DOI: 10.1088/1361-6528/abbce8.Peer-Reviewed Original ResearchDye-sensitized solar cellsPerovskite solar cellsSolar energy conversionMultiple exciton generationSolar cellsEnergy conversionOrganic photovoltaicsNanoscale characterization methodsNanoscale material characterizationApplication of nanotechnologySolar energy conversion efficiencySolar water splittingConversion efficiencyStructure-property relationshipsNanomaterial synthesisSemiconductor nanoparticlesSingle nanoparticlesScalable manufacturingEnergy conversion efficiencySemiconductor nanostructuresWater splittingFuel conversion efficiencySmart engineeringHybrid halide perovskitesBio-catalysis
2016
Quantitative structure-property relationship model leading to virtual screening of fullerene derivatives: Exploring structural attributes critical for photoconversion efficiency of polymer solar cell acceptors
Kar S, Sizochenko N, Ahmed L, Batista V, Leszczynski J. Quantitative structure-property relationship model leading to virtual screening of fullerene derivatives: Exploring structural attributes critical for photoconversion efficiency of polymer solar cell acceptors. Nano Energy 2016, 26: 677-691. DOI: 10.1016/j.nanoen.2016.06.011.Peer-Reviewed Original ResearchPower conversion efficiencyHigh power conversion efficiencyConversion efficiencyPolymer solar cellsFullerene derivative acceptorsSolar cellsStructure-property relationship modelsPhotoconversion efficiencyProduction processQuantitative structure-property relationship (QSPR) modelEfficiencyFullerene derivativesHigher valuesCarrier donorStructural attributesDevelopment of FDRelationship modelMaterialsModelToxic hazards
2015
Interfacial electron transfer in photoanodes based on phosphorus( v ) porphyrin sensitizers co-deposited on SnO 2 with the Ir(III)Cp* water oxidation precatalyst
Poddutoori P, Thomsen J, Milot R, Sheehan S, Negre C, Garapati V, Schmuttenmaer C, Batista V, Brudvig G, van der Est A. Interfacial electron transfer in photoanodes based on phosphorus( v ) porphyrin sensitizers co-deposited on SnO 2 with the Ir(III)Cp* water oxidation precatalyst. Journal Of Materials Chemistry A 2015, 3: 3868-3879. DOI: 10.1039/c4ta07018f.Peer-Reviewed Original ResearchInterfacial electron transferElectron paramagnetic resonanceQuantum dynamics simulationsElectron transferPhotoanode componentCatalytic water oxidationEfficient interfacial electron transferDynamics simulationsMetal oxide surfacesSolar cellsTime-resolved terahertz spectroscopy measurementsSteady-state fluorescenceTypes of porphyrinsTerahertz spectroscopy measurementsOxidation precatalystWater oxidationAxial coordinationChloride ligandsPorphyrin sensitizersOxidation stateCharge recombinationParamagnetic resonanceSnO 2Phosphorus porphyrinsSpectroscopy measurements
2014
Single Molecule Rectification Induced by the Asymmetry of a Single Frontier Orbital
Ding W, Negre C, Vogt L, Batista V. Single Molecule Rectification Induced by the Asymmetry of a Single Frontier Orbital. Journal Of Chemical Theory And Computation 2014, 10: 3393-3400. PMID: 26588307, DOI: 10.1021/ct5004687.Peer-Reviewed Original ResearchDye-sensitized solar cellsFrontier orbitalsDensity functional theoryInterfacial electron transferLow bias potentialNonequilibrium Green's function formalismMolecular assembliesElectron transferElectronic rectificationOrbital leadsFunctional theoryCharge transportFermi levelBias potentialSolar cellsOrbitalsSimple design principlesElectron densityTransport propertiesSuppress recombinationFunction formalismDesign principlesAsymmetric characterGreen's function formalismDominant contribution
2013
Efficiency of Interfacial Electron Transfer from Zn-Porphyrin Dyes into TiO2 Correlated to the Linker Single Molecule Conductance
Negre C, Milot R, Martini L, Ding W, Crabtree R, Schmuttenmaer C, Batista V. Efficiency of Interfacial Electron Transfer from Zn-Porphyrin Dyes into TiO2 Correlated to the Linker Single Molecule Conductance. The Journal Of Physical Chemistry C 2013, 117: 24462-24470. DOI: 10.1021/jp408738b.Peer-Reviewed Original ResearchDye-sensitized solar cellsSingle-molecule conductanceElectron injection efficiencyZn-porphyrin dyeMolecule conductanceLinker moleculesHigh performance dye-sensitized solar cellsZn-porphyrin complexInterfacial electron transferEfficient electron transportInjection efficiencyMolecular conductanceAdsorbate complexesElectron transferMolecular linkersSame chromophoreTiO2 nanoparticlesSolar cellsDyeModular assemblyMoleculesSpectroscopySemiconductor interfaceLinkerElectron transportHydroxamate Anchors for Improved Photoconversion in Dye-Sensitized Solar Cells
Brewster TP, Konezny SJ, Sheehan SW, Martini LA, Schmuttenmaer CA, Batista VS, Crabtree RH. Hydroxamate Anchors for Improved Photoconversion in Dye-Sensitized Solar Cells. Inorganic Chemistry 2013, 52: 6752-6764. PMID: 23687967, DOI: 10.1021/ic4010856.Peer-Reviewed Original ResearchConceptsDye-sensitized solar cellsSolar cellsRuthenium polypyridyl dyesElectricity conversion efficiencyExhibit high efficiencyCurrent density–voltage (J–V) characteristic curvesAnchoring groupDye moleculesElectron transferMolecular adsorbatesPhotocatalytic applicationsTiO2 surfaceCell performanceSemiconductor surfacesConversion efficiencyStructure/function relationshipsFundamental insightsFuture applicationsSimilar conditionsHigh efficiencyPhotoanodeElectrolyteFunction relationshipsAdsorbatesSurfaceChapter 1
Xiao D, Warnke I, Bedford J, Batista V. Chapter 1. Chemical Modelling 2013, 10: 1-31. DOI: 10.1039/9781849737241-00001.Peer-Reviewed Original ResearchInverse molecular designMolecular designDye-sensitized solar cellsMaterials discoveryMolecular design strategyElectronic structure calculationsNovel nonlinear optical materialNonlinear optical materialsCatalyst designSolar fuelsMolecular systemsStructure calculationsSolar cellsOptical materialsDesign strategyComputational approachPromising approachCHAPTER 1
Konezny S, Batista V. CHAPTER 1. Energy And Environment Series 2013, 1-36. DOI: 10.1039/9781849735445-00001.Peer-Reviewed Original ResearchMolecular adsorbatesEarth abundant transition metal complexesTransition metal complexesInverse molecular designSolar cellsNew photocatalytic materialsSolar light absorptionMetal complexesRedox propertiesSolar cell componentsChemical fuelsMolecular designPhotocatalytic materialsSolar cell assemblyNanoporous materialsRedox potentialFirst-principles calculationsCharge transportCurrent-voltage characteristicsLight absorptionPrinciples calculationsSemiconductor materialsAdsorbatesFundamental insightsMechanistic characterization
2012
Bioinspired High-Potential Porphyrin Photoanodes
Moore G, Konezny S, Song H, Milot R, Blakemore J, Lee M, Batista V, Schmuttenmaer C, Crabtree R, Brudvig G. Bioinspired High-Potential Porphyrin Photoanodes. The Journal Of Physical Chemistry C 2012, 116: 4892-4902. DOI: 10.1021/jp210096m.Peer-Reviewed Original ResearchPorphyrin radical cationRadical cationPhotoelectrochemical cellsReduction potentialDye-sensitized solar cellsElectrochemical reduction potentialsMetal oxide surfacesRedox coupleAppropriate energeticsElectron mediatorOxidation powerSpectroscopic studiesPhotoelectrochemical measurementsSnO2 nanoparticlesBare anodeVisible regionTerahertz spectroscopic studyReaction centersCationsSolar cellsPhotoanodeAnodeNatural counterpartsConduction bandSensitizers
2011
Energy Research: Computational Challenges
Batista V. Energy Research: Computational Challenges. 2011 DOI: 10.1002/9781119951438.eibc0461.Peer-Reviewed Original ResearchElectron transferEarth abundant transition metal complexesTransition metal complexesInterfacial electron transferNovel photocatalytic materialsVisible light absorptionNanoporous TiO2 thin filmsMetal complexesManganese catalystsPhotocatalytic materialsPhotocatalytic mechanismTiO2 thin filmsLight absorptionSolar cellsRecent computational workSemiconductor materialsFuel productionThin filmsRenewable resourcesElectrochemistryOverall efficiencyCatalystSpectroscopyComputational workRecent advancesThiocyanate Linkage Isomerism in a Ruthenium Polypyridyl Complex
Brewster TP, Ding W, Schley ND, Hazari N, Batista VS, Crabtree RH. Thiocyanate Linkage Isomerism in a Ruthenium Polypyridyl Complex. Inorganic Chemistry 2011, 50: 11938-11946. PMID: 22066656, DOI: 10.1021/ic200950e.Peer-Reviewed Original ResearchRuthenium polypyridyl complexesPolypyridyl complexesLinkage isomersEfficient dye-sensitized solar cellsDye-sensitized solar cellsDensity functional theory analysisX-ray crystallographyNew complexesLinkage isomerismThiocyanate complexesInseparable mixtureIsomerization mechanismRelative solubilitySolar cellsIsomersEnergy applicationsComplexesSolar energy applicationsN719Elevated temperaturesMixtureCrystallographyIsomerismExperimental observationsSolubilityInverse Design and Synthesis of acac-Coumarin Anchors for Robust TiO2 Sensitization
Xiao D, Martini LA, Snoeberger RC, Crabtree RH, Batista VS. Inverse Design and Synthesis of acac-Coumarin Anchors for Robust TiO2 Sensitization. Journal Of The American Chemical Society 2011, 133: 9014-9022. PMID: 21553881, DOI: 10.1021/ja2020313.Peer-Reviewed Original ResearchDye-sensitized solar cellsSolar cellsDesign of sensitizersInterfacial electron injectionHomogeneous catalysisMolecular sensitizersTiO2 sensitizationLigand designSpectroscopic characterizationCoumarin dyesMolecular structureAqueous conditionsMolecular adsorbatesPhotoabsorption propertiesSolar lightMolecular frameworkRobust attachmentElectron injectionSensitization propertiesImproved sensitizationSynthesisSensitizersInverse design methodologyPractical applicationsCatalysis
2010
Study of Redox Species and Oxygen Vacancy Defects at TiO2−Electrolyte Interfaces
da Silva R, Rego L, Freire J, Rodriguez J, Laria D, Batista V. Study of Redox Species and Oxygen Vacancy Defects at TiO2−Electrolyte Interfaces. The Journal Of Physical Chemistry C 2010, 114: 19433-19442. DOI: 10.1021/jp107385e.Peer-Reviewed Original ResearchRedox speciesElectronic structure calculationsDye-sensitized solar cellsStructure calculationsDifferent redox speciesFree energy barrierMolecular dynamics simulationsPyridine additivesRecombination of photoelectronsSolvent dynamicsTiO2 surfaceElectronic propertiesDynamics simulationsOxygen vacanciesSolar cellsSurface defectsElectrolyteAdsorptionDeeper insightInterfaceCalculationsMolecular processesAdditivesPhotoelectronVacancies
2009
Synergistic effect between anatase and rutile TiO 2 nanoparticles in dye -sensitized solar cells
Li G, Richter CP, Milot RL, Cai L, Schmuttenmaer CA, Crabtree RH, Brudvig GW, Batista VS. Synergistic effect between anatase and rutile TiO 2 nanoparticles in dye -sensitized solar cells. Dalton Transactions 2009, 0: 10078-10085. PMID: 19904436, DOI: 10.1039/b908686b.Peer-Reviewed Original ResearchDye-sensitized solar cellsAnatase nanoparticlesOverall solar conversion efficiencyPowder X-ray diffractionSynergistic effectInterfacial electron transferSolar cellsTiO 2 nanoparticlesAddition of rutileX-ray diffractionSolar conversion efficiencyPhoto-excited electronsTime-resolved terahertz spectroscopyElectron transferScanning electron microscopyDSSC efficiencyOrganic contaminantsHeterogeneous photocatalysisLight harvestingPhotocatalytic activityRutile nanoparticlesTiCl4 treatmentNanoparticlesTiO2 nanocompositesAnataseInterfacial Electron Transfer in TiO2 Surfaces Sensitized with Ru(II)−Polypyridine Complexes
Jakubikova E, Snoeberger R, Batista V, Martin R, Batista E. Interfacial Electron Transfer in TiO2 Surfaces Sensitized with Ru(II)−Polypyridine Complexes. The Journal Of Physical Chemistry A 2009, 113: 12532-12540. PMID: 19594155, DOI: 10.1021/jp903966n.Peer-Reviewed Original ResearchConceptsInterfacial electron transferElectronic excitationBidentate modeElectron transferDye-sensitized solar cellsElectronic statesConventional dye-sensitized solar cellsDensity functional theory calculationsVisible-light photoexcitationSolar cellsStable covalent bondsElectron transfer mechanismInterfacial electron-transfer mechanismVisible light excitationFunctional theory calculationsQuantum dynamics simulationsExcited electronic statesPolypyridine complexesPhosphonate linkersAdsorbate moleculesCovalent bondsIET efficiencyTiO2 surfaceTime scalesTheory calculationsDeposition of an oxomanganese water oxidation catalyst on TiO 2 nanoparticles : computational modeling, assembly and characterization
Li G, Sproviero E, Snoeberger R, Iguchi N, Blakemore J, Crabtree R, Brudvig G, Batista V. Deposition of an oxomanganese water oxidation catalyst on TiO 2 nanoparticles : computational modeling, assembly and characterization. Energy & Environmental Science 2009, 2: 230-238. DOI: 10.1039/b818708h.Peer-Reviewed Original ResearchWater oxidation catalystsOxidation catalystTiO2 nanoparticlesUV-visible spectroscopyTiO 2 nanoparticlesMixed valence stateAmorphous TiO2 nanoparticlesWater ligandsElectrochemical studiesElectrochemical measurementsEPR spectroscopySurface complexesMimic photosynthesisDirect adsorptionSitu synthesisTiO2 surfaceSuccessful attachmentEPR dataNanoparticlesCatalystSolar cellsSpectroscopyComputational modelingAdsorptionEPR
2005
Energy Research: Computational Challenges
Batista V. Energy Research: Computational Challenges. 2005 DOI: 10.1002/0470862106.ia812.Peer-Reviewed Original ResearchElectron transferEarth abundant transition metal complexesTransition metal complexesInterfacial electron transferNovel photocatalytic materialsVisible light absorptionNanoporous TiO2 thin filmsMetal complexesManganese catalystsPhotocatalytic materialsPhotocatalytic mechanismTiO2 thin filmsLight absorptionSolar cellsRecent computational workSemiconductor materialsFuel productionThin filmsRenewable resourcesElectrochemistryOverall efficiencyCatalystSpectroscopyComputational workRecent advances