Driving superconducting qubits into chaos
Chávez-Carlos J, Reynoso M, Cortiñas R, García-Mata I, Batista V, Pérez-Bernal F, Wisniacki D, Santos L. Driving superconducting qubits into chaos. Quantum Science And Technology 2024, 10: 015039. DOI: 10.1088/2058-9565/ad93fb.Peer-Reviewed Original ResearchKerr-cat qubitsSuperconducting circuitsQuantum computationFault-tolerant quantum computationKerr parametric oscillatorQuantum chaosQuantum informationRegion of validityParametric oscillatorQubitsGate timeInduce chaosIncreasing nonlinearitiesPotential building blocksChaosKerrOscillationsGateNonlinearityRealizationCircuitSubspace-Search Quantum Imaginary Time Evolution for Excited State Computations
Cianci C, Santos L, Batista V. Subspace-Search Quantum Imaginary Time Evolution for Excited State Computations. Journal Of Chemical Theory And Computation 2024, 20: 8940-8947. PMID: 39352769, DOI: 10.1021/acs.jctc.4c00915.Peer-Reviewed Original ResearchNoisy intermediate-scale quantumQuantum imaginary time evolutionImaginary time evolutionExcited statesQuantum (NISQStudy of excited statesComputation of excited statesLow-lying excited statesTime evolutionVariational quantum imaginary time evolutionCalculation of low-lying excited statesExcited state computationsQuantum systemsSmall molecular systemsVariational quantumLiH moleculeQuantum devicesGround stateQuantum computationQuantumMolecular systemsState algorithmState computationsLocal minimaVariational algorithmSimulating Cavity-Modified Electron Transfer Dynamics on NISQ Computers
Lyu N, Khazaei P, Geva E, Batista V. Simulating Cavity-Modified Electron Transfer Dynamics on NISQ Computers. The Journal Of Physical Chemistry Letters 2024, 15: 9535-9542. PMID: 39264851, DOI: 10.1021/acs.jpclett.4c02220.Peer-Reviewed Original ResearchElectron transfer dynamicsElectron transfer rateTransfer dynamicsIntramolecular electron transfer reactionElectron transfer reactionsNISQ computersCavity frequencyMolecular triadMolecular systemsTransfer reactionsQuantum (NISQ) computersNoisy Intermediate-Scale Quantum (NISQ) computersThermo field dynamicsIncreasing coupling strengthTetrahydrofuranTransfer rateCoupling strengthQuantum computationQuantum mechanicsEffect of couplingElectronNISQRate processesOscillatory dynamicsReactionSimulating Chemistry on Bosonic Quantum Devices
Dutta R, Cabral D, Lyu N, Vu N, Wang Y, Allen B, Dan X, Cortiñas R, Khazaei P, Schäfer M, Albornoz A, Smart S, Nie S, Devoret M, Mazziotti D, Narang P, Wang C, Whitfield J, Wilson A, Hendrickson H, Lidar D, Pérez-Bernal F, Santos L, Kais S, Geva E, Batista V. Simulating Chemistry on Bosonic Quantum Devices. Journal Of Chemical Theory And Computation 2024, 20: 6426-6441. PMID: 39068594, DOI: 10.1021/acs.jctc.4c00544.Peer-Reviewed Original ResearchQuantum devicesQuantum two-level systemTwo-level systemMolecular vibronic spectraCalculations of electronic structureQuantum simulationBoson operatorsSystem HamiltonianQuantum computationVibronic spectraElectronic structureChemical dynamicsSolution-phaseReview recent progressGas-phaseChemical structureChemical problemsRecent progressCalculationsSimulate chemistryBosonsHamiltonianOscillationsDynamicsDevicesHolographic Gaussian Boson Sampling with Matrix Product States on 3D cQED Processors
Lyu N, Bergold P, Soley M, Wang C, Batista V. Holographic Gaussian Boson Sampling with Matrix Product States on 3D cQED Processors. Journal Of Chemical Theory And Computation 2024, 20: 6402-6413. PMID: 38968605, DOI: 10.1021/acs.jctc.4c00384.Peer-Reviewed Original ResearchGaussian boson samplingCircuit quantum electrodynamicsBoson samplingMatrix product state representationQubit-based quantum computersCircuit quantum electrodynamics devicesMatrix product statesFock statesQuantum electrodynamicsHolographic approachQuantum circuitsQuantum computationProduct statesState representationTruncated expansionElectrodynamicsSimulation of molecular dockingState vectorModeStateSulfonamide ligandsMolecular dockingCircuitSimulationEffective versus Floquet theory for the Kerr parametric oscillator
García-Mata I, Cortiñas R, Xiao X, Chávez-Carlos J, Batista V, Santos L, Wisniacki D. Effective versus Floquet theory for the Kerr parametric oscillator. Quantum 2024, 8: 1298. DOI: 10.22331/q-2024-03-25-1298.Peer-Reviewed Original ResearchState-of-the-art experimentsKerr parametric oscillatorCat statesFloquet statesEffective HamiltonianParametrized gatesQuantum technologiesKerr oscillatorsQuasi-energiesParametric oscillatorPerturbation expansionQuantum computationParameter regimesRelevant physicsFloquet theoryKerrFloquetTechnological interestPhysicsOscillationsHamiltonianQuantumStateLow-orderOriginal system