Charge Transport and Rectification in Donor–Acceptor Dyads
Hedström S, Matula A, Batista V. Charge Transport and Rectification in Donor–Acceptor Dyads. The Journal Of Physical Chemistry C 2017, 121: 19053-19062. DOI: 10.1021/acs.jpcc.7b05749.Peer-Reviewed Original ResearchFrontier orbitalsConjugated donor–acceptor systemA systemDensity functional theory levelDonor-acceptor dyadsDonor-acceptor systemsAppropriate transport propertiesGold electrodeA dyadsMolecular conformationTransport propertiesMolecular junctionsTheory levelRational designPhotovoltaic devicesCharge transportStructure-function relationshipsChemical compositionLarge rectification ratioOrbitalsFundamental physical insightsMolecular levelRectification propertiesRectification ratioFermi levelElectrode-Ligand Interactions Dramatically Enhance CO2 Conversion to CO by the [Ni(cyclam)](PF6)2 Catalyst
Wu Y, Rudshteyn B, Zhanaidarova A, Froehlich J, Ding W, Kubiak C, Batista V. Electrode-Ligand Interactions Dramatically Enhance CO2 Conversion to CO by the [Ni(cyclam)](PF6)2 Catalyst. ACS Catalysis 2017, 7: 5282-5288. DOI: 10.1021/acscatal.7b01109.Peer-Reviewed Original ResearchCO2 conversionTransition metal complexesElectrochemical CO2 conversionDesign of ligandsEnhanced reaction kineticsCell operating conditionsCyclam ligandGold electrodeElectrocatalytic performanceHg surfaceDispersive interactionsReaction kineticsMetallic surfacesCatalystDramatic enhancementLigandsCOConversionSurfaceElectrodeComplexesInteractionKineticsOperating conditions