2024
Identifying G6PC3 as a Potential Key Molecule in Hypoxic Glucose Metabolism of Glioblastoma Derived from the Depiction of 18F‐Fluoromisonidazole and 18F‐Fluorodeoxyglucose Positron Emission Tomography
Okamoto M, Yamaguchi S, Sawaya R, Echizenya S, Ishi Y, Kaneko S, Motegi H, Toyonaga T, Hirata K, Fujimura M. Identifying G6PC3 as a Potential Key Molecule in Hypoxic Glucose Metabolism of Glioblastoma Derived from the Depiction of 18F‐Fluoromisonidazole and 18F‐Fluorodeoxyglucose Positron Emission Tomography. BioMed Research International 2024, 2024: 2973407. PMID: 38449509, PMCID: PMC10917478, DOI: 10.1155/2024/2973407.Peer-Reviewed Original ResearchConceptsPositron emission tomographyF-FDGMRNA expressionOverall survivalGlucose metabolismF-FDG positron emission tomographyAssociated with poor overall survivalProtein expressionEmission tomographyGross total resectionPotential key moleculesFluorine-18 fluorodeoxyglucoseHypoxic conditionsDegree of glucose metabolismMolecular mechanisms of glucose metabolismAggressive primary brain tumorPoor overall survivalPrimary brain tumorKey moleculesTotal resectionPreoperative examinationIntratumoral hypoxiaPrognostic valuePoor prognosisBiomarkers of glioblastoma
2017
Players of ‘hypoxia orchestra’ – what is the role of FMISO?
Toyonaga T, Hirata K, Shiga T, Nagara T. Players of ‘hypoxia orchestra’ – what is the role of FMISO? European Journal Of Nuclear Medicine And Molecular Imaging 2017, 44: 1679-1681. PMID: 28634683, DOI: 10.1007/s00259-017-3754-9.Commentaries, Editorials and Letters
2016
Hypoxic glucose metabolism in glioblastoma as a potential prognostic factor
Toyonaga T, Yamaguchi S, Hirata K, Kobayashi K, Manabe O, Watanabe S, Terasaka S, Kobayashi H, Hattori N, Shiga T, Kuge Y, Tanaka S, Ito YM, Tamaki N. Hypoxic glucose metabolism in glioblastoma as a potential prognostic factor. European Journal Of Nuclear Medicine And Molecular Imaging 2016, 44: 611-619. PMID: 27752745, DOI: 10.1007/s00259-016-3541-z.Peer-Reviewed Original ResearchConceptsProgression-free survivalExtent of resectionStandardized uptake valuePositron emission tomographyGross tumor volumeFMISO positron emission tomographyMagnetic resonance imagingKarnofsky Performance ScaleOverall survivalTumor volumeGlioblastoma patientsHypoxia volumeFDG positron emission tomographyFluorodeoxyglucose positron emission tomographyPotential prognostic factorsTotal lesion glycolysisMetabolic tumor volumeHypoxic volumeVolume of interestGadolinium-enhanced T1-weighted MR imagesReference regionT1-weighted MR imagesCytoreduction surgeryFree survivalPrognostic factors18F-fluoromisonidazole positron emission tomography can predict pathological necrosis of brain tumors
Toyonaga T, Hirata K, Yamaguchi S, Hatanaka KC, Yuzawa S, Manabe O, Kobayashi K, Watanabe S, Shiga T, Terasaka S, Kobayashi H, Kuge Y, Tamaki N. 18F-fluoromisonidazole positron emission tomography can predict pathological necrosis of brain tumors. European Journal Of Nuclear Medicine And Molecular Imaging 2016, 43: 1469-1476. PMID: 26841941, DOI: 10.1007/s00259-016-3320-x.Peer-Reviewed Original ResearchConceptsPresence of necrosisBrain tumorsFMISO PETFMISO uptakeSevere hypoxiaFMISO PET/Brain tumor patientsPositron emission tomography (PET) tracerPositron emission tomographyEmission tomography tracerHistopathological necrosisPathological necrosisPoor prognosisSurgical strategyIntratumoral necrosisNeuroepithelial tumorsTumor resectionPathological diagnosisTumor patientsCerebellum ratioTreatment decisionsMethodsThis studyGroup 2Group 1Experienced neuropathologist