Susan Tausta
Associate Research ScientistCards
About
Research
Publications
2024
Fluoride transport in Arabidopsis thaliana plants is impaired in Fluoride EXporter (FEX) mutants
Tausta S, Fontaine K, Hillmer A, Strobel S. Fluoride transport in Arabidopsis thaliana plants is impaired in Fluoride EXporter (FEX) mutants. Plant Molecular Biology 2024, 114: 17. PMID: 38342783, PMCID: PMC10859346, DOI: 10.1007/s11103-023-01413-w.Peer-Reviewed Original ResearchConceptsFluoride exportMutant plantsWT plantsArabidopsis thaliana plantsSingle cell eukaryotesMulticellular plantsThaliana plantsCell eukaryotesFluoride toleranceTerminal tissuesMutantsFluoride transportPlantsFloral stemsWildtypeArabidopsisEukaryotesEnvironmental toxinsStemBacteriaPositron emission tomographyPrimary locusToxin
2023
Fluoride: Good in Toothpaste, Bad for Plants
Tausta S, Auslender A, Strobel S, Hiller D. Fluoride: Good in Toothpaste, Bad for Plants. Frontiers For Young Minds 2023, 11: 853533. DOI: 10.3389/frym.2023.853533.Peer-Reviewed Original Research
2022
Spatial resolution of an integrated C4+CAM photosynthetic metabolism
Moreno-Villena J, Zhou H, Gilman I, Tausta S, Cheung C, Edwards E. Spatial resolution of an integrated C4+CAM photosynthetic metabolism. Science Advances 2022, 8: eabn2349. PMID: 35930634, PMCID: PMC9355352, DOI: 10.1126/sciadv.abn2349.Peer-Reviewed Original Research
2021
The fluoride transporter FLUORIDE EXPORTER (FEX) is the major mechanism of tolerance to fluoride toxicity in plants1
Tausta SL, Berbasova T, Peverelli M, Strobel SA. The fluoride transporter FLUORIDE EXPORTER (FEX) is the major mechanism of tolerance to fluoride toxicity in plants1. Plant Physiology 2021, 186: 1143-1158. PMID: 33744970, PMCID: PMC8195535, DOI: 10.1093/plphys/kiab131.Peer-Reviewed Original ResearchCRISPR/Cas9-generated mutationFluoride toleranceMembrane transport proteinsConserved roleMulticellular organismsPlant kingdomIon transportersTransport proteinsExtracellular environmentYeast cellsGrowth mediumPlantsDefense mechanismsBiological organismsStages of developmentOrganismsMajor mechanismToxic fluoride ionToleranceArabidopsisToxic effectsProkaryotesHomologuesFungiProtein
2014
Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes
Tausta SL, Li P, Si Y, Gandotra N, Liu P, Sun Q, Brutnell TP, Nelson T. Developmental dynamics of Kranz cell transcriptional specificity in maize leaf reveals early onset of C4-related processes. Journal Of Experimental Botany 2014, 65: 3543-3555. PMID: 24790109, PMCID: PMC4085964, DOI: 10.1093/jxb/eru152.Peer-Reviewed Original ResearchConceptsBundle sheathComplex gene familyCell-specific transcriptomesSink-source transitionNumber of genesDevelopmental dynamicsSuccessive developmental stagesC4 photosynthesisPhotosynthetic stageGene familyTranscriptional specificityMesophyll cellsMaize leavesTranscription factorsPathway membersDifferential expressionDevelopmental stagesCell typesKey functionsGenesPotential importanceIndependent supportFull maturityTranscriptomePhotosynthesis
2012
Rice Seed Development: Highly Resolved Transcriptomic Views
Liu T, Tausta S, Gandotra N, Nelson T. Rice Seed Development: Highly Resolved Transcriptomic Views. 2012, 61-80. DOI: 10.1007/978-94-007-4749-4_4.Peer-Reviewed Original ResearchGenome-wide inventoryRNA-sequencing methodsNovel biological insightsTranscriptomic viewCrop biologyDevelopment of embryosRNA transcriptsEndosperm tissueBiological insightsBiological processesRice seedsCell typesAnatomical homologyEmbryosEndospermSeedsTemporal patternsGerminationHomologyGenesTranscriptsBiologyMicroarrayRiceRegional specialization
2010
The developmental dynamics of the maize leaf transcriptome
Li P, Ponnala L, Gandotra N, Wang L, Si Y, Tausta S, Kebrom T, Provart N, Patel R, Myers C, Reidel E, Turgeon R, Liu P, Sun Q, Nelson T, Brutnell T. The developmental dynamics of the maize leaf transcriptome. Nature Genetics 2010, 42: 1060-1067. PMID: 21037569, DOI: 10.1038/ng.703.Peer-Reviewed Original Research
2009
A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies
Jiao Y, Lori Tausta S, Gandotra N, Sun N, Liu T, Clay NK, Ceserani T, Chen M, Ma L, Holford M, Zhang HY, Zhao H, Deng XW, Nelson T. A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nature Genetics 2009, 41: 258-263. PMID: 19122662, DOI: 10.1038/ng.282.Peer-Reviewed Original Research
2008
Plant cell types: reporting and sampling with new technologies
Nelson T, Gandotra N, Tausta SL. Plant cell types: reporting and sampling with new technologies. Current Opinion In Plant Biology 2008, 11: 567-573. PMID: 18653377, DOI: 10.1016/j.pbi.2008.06.006.Peer-Reviewed Original ResearchConceptsCell typesMesophyll cellsPhloem cellsSingle transcriptSpecialized functionsSpecialized regionsIndividual cellsActivity assaysCell separationVascular systemCellsCell samplingRecent analysisTranscriptomicsProteomicsXylemTranscriptsEmbryosLeavesPlantsProteinRegulationPhysiologyExpressionMetabolismThe promise of systems biology for deciphering the control of C 4 leaf development: transcriptome profiling of leaf cell types
Nelson T, Tausta S, Gandotra N, Liu T, Ceserani T, Chen M, Jiao Y, Ma L, Deng X, Sun N, Holfold M, Li N, Zhao H. The promise of systems biology for deciphering the control of C 4 leaf development: transcriptome profiling of leaf cell types. 2008, 317-332. DOI: 10.1142/9789812709523_0018.Peer-Reviewed Original Research