2017
Ciliary Mechanisms of Cyst Formation in Polycystic Kidney Disease
Ma M, Gallagher AR, Somlo S. Ciliary Mechanisms of Cyst Formation in Polycystic Kidney Disease. Cold Spring Harbor Perspectives In Biology 2017, 9: a028209. PMID: 28320755, PMCID: PMC5666631, DOI: 10.1101/cshperspect.a028209.Peer-Reviewed Original ResearchConceptsPolycystin-2Autosomal dominant polycystic kidney diseaseCalcium-mediated signalsRole of ciliaDisruption of ciliaPolycystic kidney diseaseCellular processesCausal genesTransmembrane proteinTissue homeostasisCilia functionPrimary ciliaPolycystinsGenetic studiesHomeostatic maintenanceSignal integrationUnknown mechanismApical surfaceNephron structuresCiliaKidney tubule cellsIntact ciliaPrivileged compartmentActive remodelingTubule structure
2014
Cyst growth, polycystins, and primary cilia in autosomal dominant polycystic kidney disease
Lee SH, Somlo S. Cyst growth, polycystins, and primary cilia in autosomal dominant polycystic kidney disease. Kidney Research And Clinical Practice 2014, 33: 73-78. PMID: 26877954, PMCID: PMC4714135, DOI: 10.1016/j.krcp.2014.05.002.Peer-Reviewed Original ResearchPrimary ciliaAutosomal dominant polycystic kidney diseaseCarboxy-terminal tailDominant polycystic kidney diseaseExtracellular stimuliPolycystic kidney diseasePolycystin functionChannel proteinsPolycystinsPKD1 geneCystic kidney diseaseCiliaCalcium signalsRenal epitheliumProteinIntact ciliaKidney diseaseGenesCyst growthCurrent understandingReduced levelsPathwayComplete inactivationInactivationRecent data
2013
Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease
Ma M, Tian X, Igarashi P, Pazour GJ, Somlo S. Loss of cilia suppresses cyst growth in genetic models of autosomal dominant polycystic kidney disease. Nature Genetics 2013, 45: 1004-1012. PMID: 23892607, PMCID: PMC3758452, DOI: 10.1038/ng.2715.Peer-Reviewed Original Research