2024
A synthetic agent ameliorates polycystic kidney disease by promoting apoptosis of cystic cells through increased oxidative stress
Fedeles B, Bhardwaj R, Ishikawa Y, Khumsubdee S, Krappitz M, Gubina N, Volpe I, Andrade D, Westergerling P, Staudner T, Campolo J, Liu S, Dong K, Cai Y, Rehman M, Gallagher A, Ruchirawat S, Croy R, Essigmann J, Fedeles S, Somlo S. A synthetic agent ameliorates polycystic kidney disease by promoting apoptosis of cystic cells through increased oxidative stress. Proceedings Of The National Academy Of Sciences Of The United States Of America 2024, 121: e2317344121. PMID: 38241440, PMCID: PMC10823221, DOI: 10.1073/pnas.2317344121.Peer-Reviewed Original ResearchConceptsCyst cellsAutosomal dominant polycystic kidney diseaseMouse models of autosomal dominant polycystic kidney diseasePolycystic kidney diseaseModel of autosomal dominant polycystic kidney diseaseKidney diseaseDeveloped primersMitochondrial oxidative stressPathophysiology of autosomal dominant polycystic kidney diseaseOxidative stressInduce apoptosisMitochondrial respirationCystic cellsUp-regulating aerobic glycolysisHomozygous inactivationMonogenic causeDominant polycystic kidney diseaseAerobic glycolysisRenal replacement therapyApoptosisEnd-stage kidney diseaseAnti-tumor agentsAdult mouse modelChronic kidney diseaseAlkylate DNA
2013
Mechanoprotection by Polycystins Against Apoptosis is Mediated Through the Opening of Stretch‐Activated K2P Channels
Duprat F, Peyronnet R, Sharif‐Naeini R, Folgering J, Arhatte M, Jodar M, Boustany C, Gallian C, Tauc M, Duranton C, Rubera I, Lesage F, Pei Y, Peters D, Somlo S, Sachs F, Patel A, Honoré E. Mechanoprotection by Polycystins Against Apoptosis is Mediated Through the Opening of Stretch‐Activated K2P Channels. The FASEB Journal 2013, 27: 912.2-912.2. DOI: 10.1096/fasebj.27.1_supplement.912.2.Peer-Reviewed Original ResearchCell apoptosisTwo-pore KAutosomal dominant polycystic kidney diseaseRenal epithelial cellsTubular cell apoptosisPKD2 geneEpithelial cell proliferationK2P channelsCell proliferationMechanoprotectionPolycystinsApoptosisEpithelial cellsDominant polycystic kidney diseasePKD1Tubular epithelial cell proliferationPolycystic kidney diseaseFunctional relationshipMechanical stressUnresolved questionsCellsFondation de FranceKidney diseaseKidney failureGenes
2012
Mechanoprotection by Polycystins against Apoptosis Is Mediated through the Opening of Stretch-Activated K2P Channels
Peyronnet R, Sharif-Naeini R, Folgering JH, Arhatte M, Jodar M, Boustany C, Gallian C, Tauc M, Duranton C, Rubera I, Lesage F, Pei Y, Peters DJ, Somlo S, Sachs F, Patel A, Honoré E, Duprat F. Mechanoprotection by Polycystins against Apoptosis Is Mediated through the Opening of Stretch-Activated K2P Channels. Cell Reports 2012, 1: 241-250. PMID: 22832196, PMCID: PMC3437542, DOI: 10.1016/j.celrep.2012.01.006.Peer-Reviewed Original ResearchMeSH KeywordsAcidosisActin CytoskeletonAnimalsApoptosisChlorocebus aethiopsCOS CellsCytoprotectionDocosahexaenoic AcidsGene Knockout TechniquesIon Channel GatingKidney Tubules, ProximalMechanotransduction, CellularMiceMice, KnockoutMutant ProteinsPotassium Channels, Tandem Pore DomainProtein SubunitsStress, MechanicalTRPP Cation ChannelsConceptsEpithelial cellsRenal epithelial cellsProximal convoluted tubule epithelial cellsAutosomal dominant polycystic kidney diseaseDominant polycystic kidney diseaseKidney disease statesTubule epithelial cellsPolycystic kidney diseaseHeart failureKidney diseaseImportant pathologiesDisease statesApoptotic cell deathTREK-2K2P channelsCell deathApoptosisCellsAtherosclerosisDiseasePathology