Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2
Fernández S, Assaf E, Ahmad S, Travis B, Curley J, Hazari N, Ertem M, Miller A. Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2. Angewandte Chemie International Edition 2024, e202416061. PMID: 39571086, DOI: 10.1002/anie.202416061.Peer-Reviewed Original ResearchTransfer hydrogenationMethanol synthesisIsopropyl formateReduction of CO2 to methanolCO2 reduction to formateCO2 to methanolHydrogen bonding interactionsReduction to formateFormate to methanolEnergy-dense liquid fuelsRoom temperature reductionMulticatalyst systemsOrganometallic catalystsOrganometallic reactionsFormate ionTrifluoromethanesulfonic acidBonding interactionsFischer esterificationFormate estersIsopropanol solventHydrogenMethanolEster substratesElectrocatalystsEnergy storageRoom‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2
Fernández S, Assaf E, Ahmad S, Travis B, Curley J, Hazari N, Ertem M, Miller A. Room‐Temperature Formate Ester Transfer Hydrogenation Enables an Electrochemical/Thermal Organometallic Cascade for Methanol Synthesis from CO2. Angewandte Chemie 2024 DOI: 10.1002/ange.202416061.Peer-Reviewed Original ResearchTransfer hydrogenationMethanol synthesisIsopropyl formateReduction of CO2 to methanolCO2 reduction to formateCO2 to methanolHydrogen bonding interactionsReduction to formateFormate to methanolEnergy-dense liquid fuelsRoom temperature reductionMulticatalyst systemsOrganometallic catalystsOrganometallic reactionsFormate ionTrifluoromethanesulfonic acidBonding interactionsFischer esterificationFormate estersIsopropanol solventHydrogenMethanolEster substratesElectrocatalystsEnergy storageLinear Free Energy Relationships Associated with Hydride Transfer From [(6,6′‑R2‑bpy)Re(CO)3H]: A Cautionary Tale in Identifying Hydrogen Bonding Effects in the Secondary Coordination Sphere
Elsby M, Kumar A, Daniels L, Ertem M, Hazari N, Mercado B, Paulus A. Linear Free Energy Relationships Associated with Hydride Transfer From [(6,6′‑R2‑bpy)Re(CO)3H]: A Cautionary Tale in Identifying Hydrogen Bonding Effects in the Secondary Coordination Sphere. Inorganic Chemistry 2024, 63: 19396-19407. PMID: 39344157, DOI: 10.1021/acs.inorgchem.4c03365.Peer-Reviewed Original ResearchLinear free energy relationshipBpy ligandsThermodynamic hydricitiesHydrogen bondsMetal coordination planeRhenium hydride complexesSolid-state structuresExperimentally determined rate constantsSecondary coordination sphereHydrogen bonding effectsFree energy relationshipX-ray crystallographyDetermined rate constantsHydride complexesKinetic hydricityThermodynamic hydricityCoordination sphereFormate speciesNitrogen donorsTransition stateEnergy relationshipHydride transferFormate complexBpyRate constantsCorrection to “Photoelectrochemical CO2 Reduction to CO Enabled by a Molecular Catalyst Attached to High-Surface-Area Porous Silicon”
Jia X, Stewart-Jones E, Alvarez-Hernandez J, Bein G, Dempsey J, Donley C, Hazari N, Houck M, Li M, Mayer J, Nedzbala H, Powers R. Correction to “Photoelectrochemical CO2 Reduction to CO Enabled by a Molecular Catalyst Attached to High-Surface-Area Porous Silicon”. Journal Of The American Chemical Society 2024, 146: 27214-27214. PMID: 39297561, DOI: 10.1021/jacs.4c12424.Peer-Reviewed Original ResearchKinetic Studies of CO2 Insertion into Metal–Element σ‑Bonds
Hazari N. Kinetic Studies of CO2 Insertion into Metal–Element σ‑Bonds. Accounts Of Chemical Research 2024, 57: 2847-2858. PMID: 39268567, DOI: 10.1021/acs.accounts.4c00440.Peer-Reviewed Original ResearchOuter-sphere processS bondsPresence of Lewis acidsKinetic studiesDimroth-Reichardt parameterMetal-catalyzed reactionsImproved catalytic performanceC-C bondsInner-sphere processAncillary ligandsCO2 insertionStronger donorAlkyl ligandsElectron-donatingLewis acidSteric bulkSolvent effectsCatalytic performanceReaction solventMetal alkylsNucleophilic attackLigand effectAlkyl groupsGeneration of fuelsSolvent increasesIron Catalysts Supported by a PNP Ligand with an Additional Hemilabile Donor for CO2 Hydrogenation
Wedal J, Virtue K, Bernskoetter W, Hazari N, Mercado B. Iron Catalysts Supported by a PNP Ligand with an Additional Hemilabile Donor for CO2 Hydrogenation. ACS Catalysis 2024, 14: 13903-13914. DOI: 10.1021/acscatal.4c04127.Peer-Reviewed Original ResearchPincer ligandIron complexesIron catalystCO2 hydrogenation to formateCatalyst resting stateIron hydride speciesHydrogenation to formateEther donorsPNP ligandCationic complexesCO2 hydrogenationHydride speciesActive catalystTurnover frequencyCatalytic performanceCatalytic lifetimeIron centerDehydrogenation reactionCatalyst deactivationCatalystTurnover numberCatalytic turnoverIron systemLigandTheoretical studyHomogeneous organic reductant based on 4,4′- t Bu2-2,2′-bipyridine for cross-electrophile coupling
Charboneau D, Huang H, Barth E, Deziel A, Germe C, Hazari N, Jia X, Kim S, Nahiyan S, Birriel–Rodriguez L, Uehling M. Homogeneous organic reductant based on 4,4′- t Bu2-2,2′-bipyridine for cross-electrophile coupling. Tetrahedron Letters 2024, 145: 155159. PMID: 39036418, PMCID: PMC11258959, DOI: 10.1016/j.tetlet.2024.155159.Peer-Reviewed Original ResearchCross-electrophile coupling reactionsHomogeneous reductionCross-electrophile couplingHomogeneous organic reductantsC(sp2)–C(sp3Organic transformationsCoupling reactionMultigram scaleOrganic solventsReduction potentialFunctional groupsOrganic reductantsBu2Ferrocenium/ferroceneMultigramSolventNi/CoReactionSynthesisLong-range electrostatic effects from intramolecular Lewis acid binding influence the redox properties of cobalt–porphyrin complexes
Alvarez-Hernandez J, Zhang X, Cui K, Deziel A, Hammes-Schiffer S, Hazari N, Piekut N, Zhong M. Long-range electrostatic effects from intramolecular Lewis acid binding influence the redox properties of cobalt–porphyrin complexes. Chemical Science 2024, 15: 6800-6815. PMID: 38725508, PMCID: PMC11077573, DOI: 10.1039/d3sc06177a.Peer-Reviewed Original ResearchAza-crown ethersLewis acidAnodic shiftPorphyrin complexesRedox propertiesLong-range electrostatic effectsDensity functional theory calculationsElectrostatic effectsLewis acid bindingCobalt porphyrin complexesMetal aqua complexesPrimary coordination sphereCo II ionsFunctional theory calculationsCoordination sphereReduction electrocatalystsLi +NMR spectroscopyEther groupsCompounds 1Theory calculationsRedox chemistryII ionsBinding constantsReduction potentialEffect of 6,6′-Substituents on Bipyridine-Ligated Ni Catalysts for Cross-Electrophile Coupling
Huang H, Alvarez-Hernandez J, Hazari N, Mercado B, Uehling M. Effect of 6,6′-Substituents on Bipyridine-Ligated Ni Catalysts for Cross-Electrophile Coupling. ACS Catalysis 2024, 14: 6897-6914. PMID: 38737398, PMCID: PMC11087080, DOI: 10.1021/acscatal.4c00827.Peer-Reviewed Original ResearchBulky substituentsNi complexesCross-electrophile couplingNi-catalyzed transformationII oxidation stateActive catalystTurnover frequencyCatalytic performanceAlkyl radicalsCatalytic intermediatesNi catalystsSubstituentsLow-spinCatalytic activityOxidation stateCl speciesHigh-spinCatalystLigandRoom temperatureBu2ReactionComplexPrecatalystXeCPhotoelectrochemical CO2 Reduction to CO Enabled by a Molecular Catalyst Attached to High-Surface-Area Porous Silicon
Jia X, Stewart-Jones E, Alvarez-Hernandez J, Bein G, Dempsey J, Donley C, Hazari N, Houck M, Li M, Mayer J, Nedzbala H, Powers R. Photoelectrochemical CO2 Reduction to CO Enabled by a Molecular Catalyst Attached to High-Surface-Area Porous Silicon. Journal Of The American Chemical Society 2024, 146: 7998-8004. PMID: 38507795, DOI: 10.1021/jacs.3c10837.Peer-Reviewed Original ResearchRe catalystsConversion of CO2 to COCO2 reduction to COPhotoelectrochemical CO2 reductionReduction to COSi-based photoelectrodesCO2 to COHigh-surface-areaOptimal reaction conditionsCatalyst attachmentAcetonitrile solutionPhotoelectrochemical conversionSi photoelectrodesSi photocathodeFaradaic efficiencyCatalytic performanceCyclic voltammogramsReaction conditionsSun illuminationCO2 reductionPhotoelectrodeFTIR spectroscopyCatalystPlanar Si waferSi cathode