2024
Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model
Sakamoto R, Murrell M. Mechanical power is maximized during contractile ring-like formation in a biomimetic dividing cell model. Nature Communications 2024, 15: 9731. PMID: 39523366, PMCID: PMC11551154, DOI: 10.1038/s41467-024-53228-y.Peer-Reviewed Original ResearchConceptsMyosin-induced stressContractile ring assemblyCell division mechanismActin filamentsActin cortexCleavage furrowDivision planeActomyosin flowsGiant unilamellar vesiclesRing assemblyCell divisionMyosin activityContractile ring-like structureShape changesRing-like structureDivision mechanismEnergetic costSymmetric divisionActinRing-like formationCell modelUnilamellar vesiclesIn vitro modelFurrowCellsEnergy partitioning in the cell cortex
Chen S, Seara D, Michaud A, Kim S, Bement W, Murrell M. Energy partitioning in the cell cortex. Nature Physics 2024, 20: 1824-1832. DOI: 10.1038/s41567-024-02626-6.Peer-Reviewed Original ResearchCell cortexEntropy production rateGAP expressionCortical actin filamentsRho GTPase pathwayGTPase pathwayMyosin IIActin filamentsDiversity patternsEnergy partitioningRhoOnsager reciprocityCell phenotypeProtein expressionThermodynamic equilibriumCellsSpiral travelling waveProduction rateTemporal dynamicsLiving systemsActinEnergyWavePhenotypeActivityActive tension and membrane friction mediate cortical flows and blebbing in a model actomyosin cortex
Sakamoto R, Murrell M. Active tension and membrane friction mediate cortical flows and blebbing in a model actomyosin cortex. Physical Review Research 2024, 6: 033024. DOI: 10.1103/physrevresearch.6.033024.Peer-Reviewed Original ResearchActomyosin cortexCell membraneActin cytoskeletonCortical flowMembrane blebbingCell divisionCell migrationCytoskeletonActomyosinBiological phenomenaMembrane bulgesBlebsCellsMembraneViscoelastic fluidMechanical responseElastic stressesStress yieldActinUbiquitous structuresApoptosisMechanical stressMembrane elasticityPhysical behaviorGrowth‐induced collective bending and kinetic trapping of cytoskeletal filaments
Banerjee D, Freedman S, Murrell M, Banerjee S. Growth‐induced collective bending and kinetic trapping of cytoskeletal filaments. Cytoskeleton 2024, 81: 409-419. PMID: 38775207, DOI: 10.1002/cm.21877.Peer-Reviewed Original ResearchActin networkFilamentous growthActin filamentsTurnover of actin filamentsActin filament growthKinetic trapsActin poolFilament polymerizationActin cortexCytoskeletal filamentsSubunit poolActinFilamentsSubunitConsequence of growthFilament mechanismNematic defectsCrowded environmentLong-livedGrowthPoolAbundanceBending patternCellsTurnoverConfinement induces internal flows in adherent cell aggregates
Yousafzai M, Amiri S, Sun Z, Pahlavan , Murrell M. Confinement induces internal flows in adherent cell aggregates. Journal Of The Royal Society Interface 2024, 21: 20240105. PMID: 38774959, PMCID: PMC11285874, DOI: 10.1098/rsif.2024.0105.Peer-Reviewed Original Research
2022
In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles.
Chen S, Sun Z, Murrell M. In Vitro Reconstitution of the Actin Cytoskeleton Inside Giant Unilamellar Vesicles. Journal Of Visualized Experiments 2022 PMID: 36094272, DOI: 10.3791/64026.Peer-Reviewed Original ResearchConceptsGiant unilamellar vesiclesCytoskeleton networkLipid dropletsCell‐mimicking systemUnilamellar vesiclesActin cytoskeletonVitro reconstitutionGenetic regulationActin networkBiochemical regulationSynthetic biologyCellular activitiesLive cellsMixture of proteinsActin polymersLipid componentsVesiclesRegulationReconstitutionCellsCytoskeletonCell deformationMachineryBiologyQuantitative insights
2014
How cells flow in the spreading of cellular aggregates
Beaune G, Stirbat T, Khalifat N, Cochet-Escartin O, Garcia S, Gurchenkov V, Murrell M, Dufour S, Cuvelier D, Brochard-Wyart F. How cells flow in the spreading of cellular aggregates. Proceedings Of The National Academy Of Sciences Of The United States Of America 2014, 111: 8055-8060. PMID: 24835175, PMCID: PMC4050549, DOI: 10.1073/pnas.1323788111.Peer-Reviewed Original ResearchLiposome adhesion generates traction stress
Murrell M, Voituriez R, Joanny J, Nassoy P, Sykes C, Gardel M. Liposome adhesion generates traction stress. Nature Physics 2014, 10: 163-169. DOI: 10.1038/nphys2855.Peer-Reviewed Original ResearchMembrane tensionLarger traction stressCellular force generationTraction stressEssential life processesRole of membraneCellular length scalesCell tensionLife processesGlobal shape changesMechanical forcesMembraneShape changesForce generationAdhesionCytoskeletonLiposome adhesionStressRoleMechanical stressCellsCompliant substratesDivision
2004
The Systems Biology of Glycosylation
Murrell M, Yarema K, Levchenko A. The Systems Biology of Glycosylation. ChemBioChem 2004, 5: 1334-1347. PMID: 15457533, DOI: 10.1002/cbic.200400143.Peer-Reviewed Original ResearchConceptsSystems biologyRegulation of differentiationRegulation of glycosylationEukaryotic cellsBiochemical systems analysisCell regulation processesCell decisionsSignal transductionGlycosylationBiologyRegulation processesRegulationTransductionApoptosisDifferentiationProfound influenceCellsNovel research methodology