2010
The maximal cytoprotective function of the heat shock protein 27 is dependent on heat shock protein 70
Sreedharan R, Riordan M, Thullin G, Van Why S, Siegel NJ, Kashgarian M. The maximal cytoprotective function of the heat shock protein 27 is dependent on heat shock protein 70. Biochimica Et Biophysica Acta 2010, 1813: 129-135. PMID: 20934464, PMCID: PMC3014454, DOI: 10.1016/j.bbamcr.2010.08.012.Peer-Reviewed Original ResearchConceptsHeat shock protein 70Shock protein 70Cell injuryProtein 70Heat shock protein 27Renal cell injuryExpression of HSP27Maximal cytoprotective effectShock protein 27Endogenous hspNuclear binding sitesCytoprotective effectsInjuryRenal cellsLLC-PK1 cellsProtein 27Specific siRNAHSP-70HSP70 inductionRespective controlsHSP27Particular HSP70Cytoprotective functionEnergy depletionATP depletion
2001
Differential Activation of the STAT Pathway by Angiotensin II via Angiotensin Type 1 and Type 2 Receptors in Cultured Human Fetal Mesangial Cells
Seebach F, Welte T, Fu X, Block L, Kashgarian M. Differential Activation of the STAT Pathway by Angiotensin II via Angiotensin Type 1 and Type 2 Receptors in Cultured Human Fetal Mesangial Cells. Experimental And Molecular Pathology 2001, 70: 265-273. PMID: 11418005, DOI: 10.1006/exmp.2001.2361.Peer-Reviewed Original ResearchMeSH KeywordsAngiotensin IICells, CulturedDNA-Binding ProteinsFetusGlomerular MesangiumHumansKineticsMilk ProteinsPhosphorylationProtein TransportReceptor, Angiotensin, Type 1Receptor, Angiotensin, Type 2Receptors, AngiotensinSTAT1 Transcription FactorSTAT2 Transcription FactorSTAT5 Transcription FactorTrans-ActivatorsConceptsDNA-binding activityHuman mesangial cellsStat5 DNA-binding activityNuclear translocationSTAT-DNA bindingAngiotensin IISTAT5 tyrosine phosphorylationElectromobility shift assaysReceptor subtype-specific mannerMesangial cellsReceptor-specific signalingSTAT proteinsTyrosine phosphorylationShift assaysTranscription pathwayHuman fetal mesangial cellsSignal transducerSubtype-specific mannerCellular responsesSTAT pathwayAngiotensin receptor type 2Renal mesangial cellsAngiotensin II resultsVasoactive peptide angiotensin IIPossible regulatorMolecular mechanisms of TGF‐β antagonism by interferon γ and cyclosporine A in lung fibroblasts
EICKELBERG O, PANSKY A, KOEHLER E, BIHL M, TAMM M, HILDEBRAND P, PERRUCHOUD A, KASHGARIAN M, ROTH M. Molecular mechanisms of TGF‐β antagonism by interferon γ and cyclosporine A in lung fibroblasts. The FASEB Journal 2001, 15: 797-806. PMID: 11259398, DOI: 10.1096/fj.00-0233com.Peer-Reviewed Original ResearchMeSH KeywordsCells, CulturedCollagenCyclosporineDNA-Binding ProteinsExtracellular MatrixFibroblastsGenes, ReporterHumansInterferon-gammaLungModels, BiologicalOligonucleotides, AntisenseProto-Oncogene Proteins c-junPulmonary FibrosisSignal TransductionSTAT1 Transcription FactorTrans-ActivatorsTranscription Factor AP-1Transforming Growth Factor betaConceptsCollagen depositionLung fibroblastsIFN-gammaExcess extracellular matrix depositionGrowth factor-beta activityPrimary human lung fibroblastsFibrotic lung diseaseHuman lung fibroblastsTGF-beta antagonismAP-1IFN-gamma treatmentExtracellular matrix depositionLung fibrosisFatal conditionLung diseaseMolecular mechanismsPathological featuresInterferon γTranscription factor AP-1Future therapiesPharmacological agentsJunD homodimersFactor AP-1Novel targetDirect inhibition
1999
Thresholds for cellular disruption and activation of the stress response in renal epithelia
van Why S, Kim S, Geibel J, Seebach F, Kashgarian M, Siegel N. Thresholds for cellular disruption and activation of the stress response in renal epithelia. American Journal Of Physiology 1999, 277: f227-f234. PMID: 10444577, DOI: 10.1152/ajprenal.1999.277.2.f227.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsCalciumCysteine EndopeptidasesDetergentsDifferential ThresholdDNA-Binding ProteinsEpithelial CellsHeat Shock Transcription FactorsHeat-Shock ProteinsIntracellular MembranesKidneyL-Lactate DehydrogenaseLLC-PK1 CellsMultienzyme ComplexesOctoxynolProteasome Endopeptidase ComplexSodium-Potassium-Exchanging ATPaseSolubilityStress, PhysiologicalSwineTranscription FactorsConceptsATP depletionRenal epitheliumLactate dehydrogenase releaseCellular ATPReduction of ATPRenal ischemiaIntracellular calciumActivation of HSF1Heat shock transcription factorDehydrogenase releaseControl ATPStress responseControl levelsProgressive accumulationProteasome inhibitionAdaptive inductionHSF activationRapid fallActivationEpitheliumIncremental increaseCellular disruptionResponseATPIschemia
1998
Role of heat stress response in the tolerance of immature renal tubules to anoxia
Gaudio K, Thulin G, Mann A, Kashgarian M, Siegel N. Role of heat stress response in the tolerance of immature renal tubules to anoxia. American Journal Of Physiology 1998, 274: f1029-f1036. PMID: 9841493, DOI: 10.1152/ajprenal.1998.274.6.f1029.Peer-Reviewed Original ResearchMeSH KeywordsAge FactorsAnimalsAnimals, NewbornBlotting, NorthernCarbonyl Cyanide m-Chlorophenyl HydrazoneCell HypoxiaDNA, MitochondrialDNA-Binding ProteinsElectrophoresisHeat Shock Transcription FactorsHeat-Shock ProteinsHot TemperatureHSP72 Heat-Shock ProteinsKidney TubulesMitochondriaNystatinOuabainOxygen ConsumptionRatsRNA, MessengerTranscription Factors