1999
Continuous detection of extracellular ATP on living cells by using atomic force microscopy
Schneider S, Egan M, Jena B, Guggino W, Oberleithner H, Geibel J. Continuous detection of extracellular ATP on living cells by using atomic force microscopy. Proceedings Of The National Academy Of Sciences Of The United States Of America 1999, 96: 12180-12185. PMID: 10518596, PMCID: PMC18432, DOI: 10.1073/pnas.96.21.12180.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateCell LineCystic Fibrosis Transmembrane Conductance RegulatorEpithelial CellsHumansMicroscopy, Atomic ForceTime FactorsConceptsAtomic force microscopyForce microscopyLiving cellsImportant compoundsSurface of cellsATP concentrationSurface microenvironmentScanning tipExtracellular ATPCell linesMicroscopyPhysiological conditionsPowerful techniqueCellsContinuous detectionBiosensorSurfaceCompoundsActive tipATPConcentrationFuture developmentSoftnessDetectionMicroenvironmentCFTR Is a Conductance Regulator as well as a Chloride Channel
SCHWIEBERT E, BENOS D, EGAN M, STUTTS M, GUGGINO W. CFTR Is a Conductance Regulator as well as a Chloride Channel. Physiological Reviews 1999, 79: s145-s166. PMID: 9922379, DOI: 10.1152/physrev.1999.79.1.s145.Peer-Reviewed Original ResearchConceptsCystic fibrosis transmembrane conductance regulatorConductance regulatorABC transportersCassette transporter gene familyCFTR Cl- channel functionTransporter gene familyFamily of transportersChloride channelsFibrosis transmembrane conductance regulatorCl- channel functionABC transporter familyTransmembrane conductance regulatorIon channel proteinsCystic fibrosis epitheliaGene familyCellular functionsCellular proteinsTransporter familyChannel proteinsCF geneAmino acidsIon channelsRegulatorTransportersCl- channels
1998
[49] Assays of dynamics, mechanisms, and regulation of ATP transport and release: Implications for study of ABC transporter function
Schwiebert E, Egan M, Guggino W. [49] Assays of dynamics, mechanisms, and regulation of ATP transport and release: Implications for study of ABC transporter function. Methods In Enzymology 1998, 292: 664-675. PMID: 9711590, DOI: 10.1016/s0076-6879(98)92051-1.Peer-Reviewed Original ResearchMeSH Keywords3T3 CellsAdenosine TriphosphateAnimalsATP-Binding Cassette TransportersCells, CulturedColforsinCystic Fibrosis Transmembrane Conductance RegulatorElectrophysiologyEpithelial CellsHumansIonomycinLuminescent MeasurementsMembrane PotentialsMiceModels, BiologicalOocytesOsmolar ConcentrationPatch-Clamp TechniquesSignal TransductionTritiumConceptsCystic fibrosis transmembrane conductance regulatorABC transportersATP-binding cassette (ABC) transportersSulfonylurea receptorFibrosis transmembrane conductance regulatorTransport of ATPABC transporter functionTransmembrane conductance regulatorImportance of ATPRegulatory machineryPancreatic β-cellsATP transportCassette transportersConductance regulatorTransporter functionTransporter moleculesBiological significanceATP sensorATPAgonist functionTransportersRelease of ATPΒ-cellsPowerful approachRegulator
1996
Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator.
McNicholas C, Guggino W, Schwiebert E, Hebert S, Giebisch G, Egan M. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator. Proceedings Of The National Academy Of Sciences Of The United States Of America 1996, 93: 8083-8088. PMID: 8755607, PMCID: PMC38879, DOI: 10.1073/pnas.93.15.8083.Peer-Reviewed Original ResearchMeSH KeywordsAdenosine TriphosphateAnimalsChloride ChannelsCyclic AMP-Dependent Protein KinasesCystic Fibrosis Transmembrane Conductance RegulatorFemaleGlyburideKidneyMembrane PotentialsOocytesPatch-Clamp TechniquesPhosphorylationPotassium ChannelsPotassium Channels, Inwardly RectifyingSodium ChannelsXenopus laevis
1995
CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP
Schwiebert E, Egan M, Hwang T, Fulmer S, Allen S, Cutting G, Guggino W. CFTR regulates outwardly rectifying chloride channels through an autocrine mechanism involving ATP. Cell 1995, 81: 1063-1073. PMID: 7541313, DOI: 10.1016/s0092-8674(05)80011-x.Peer-Reviewed Original ResearchConceptsUnknown regulatory mechanismCystic fibrosis transmembrane conductance regulator (CFTR) functionRegulatory mechanismsConductance regulatorCl- secretory pathwaySignaling mechanismShort-circuit current recordingsRegulator functionCFTR functionChloride channelsCellular mechanismsSingle-channel patch-clamp recordingsCFTRCl- channelsEpithelial cellsATPAutocrine mechanismCurrent recordingsORCCPathwayCF airwaysPatch-clamp recordingsCellsMechanismRegulator
1992
Defective regulation of outwardly rectifying Cl− channels by protein kinase A corrected by insertion of CFTR
Egan M, Flotte T, Afione S, Solow R, Zeitlin P, Carter B, Guggino W. Defective regulation of outwardly rectifying Cl− channels by protein kinase A corrected by insertion of CFTR. Nature 1992, 358: 581-584. PMID: 1380129, DOI: 10.1038/358581a0.Peer-Reviewed Original ResearchConceptsCyclic AMP-dependent proteinCF geneCF bronchial epithelial cellsLethal genetic diseaseProtein kinaseDefective acidificationBronchial epithelial cellsGenetic diseasesProteinDefective regulationLarge conductanceEpithelial cellsGenesCFTRConductance pathwayCystic fibrosisLinear current-voltage relationshipVirus vectorsRegulationKinaseConductancePathwayExpressionAcidificationCells